@inproceedings{lane-etal-2021-computational,
title = "A Computational Model for Interactive Transcription",
author = "Lane, William and
Bettinson, Mat and
Bird, Steven",
editor = "Dragut, Eduard and
Li, Yunyao and
Popa, Lucian and
Vucetic, Slobodan",
booktitle = "Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.dash-1.16",
doi = "10.18653/v1/2021.dash-1.16",
pages = "105--111",
abstract = "Transcribing low resource languages can be challenging in the absence of a good lexicon and trained transcribers. Accordingly, we seek a way to enable interactive transcription whereby the machine amplifies human efforts. This paper presents a data model and a system architecture for interactive transcription, supporting multiple modes of interactivity, increasing the likelihood of finding tasks that engage local participation in language work. The approach also supports other applications which are useful in our context, including spoken document retrieval and language learning.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lane-etal-2021-computational">
<titleInfo>
<title>A Computational Model for Interactive Transcription</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Lane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mat</namePart>
<namePart type="family">Bettinson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bird</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Dragut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucian</namePart>
<namePart type="family">Popa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Slobodan</namePart>
<namePart type="family">Vucetic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transcribing low resource languages can be challenging in the absence of a good lexicon and trained transcribers. Accordingly, we seek a way to enable interactive transcription whereby the machine amplifies human efforts. This paper presents a data model and a system architecture for interactive transcription, supporting multiple modes of interactivity, increasing the likelihood of finding tasks that engage local participation in language work. The approach also supports other applications which are useful in our context, including spoken document retrieval and language learning.</abstract>
<identifier type="citekey">lane-etal-2021-computational</identifier>
<identifier type="doi">10.18653/v1/2021.dash-1.16</identifier>
<location>
<url>https://aclanthology.org/2021.dash-1.16</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>105</start>
<end>111</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Computational Model for Interactive Transcription
%A Lane, William
%A Bettinson, Mat
%A Bird, Steven
%Y Dragut, Eduard
%Y Li, Yunyao
%Y Popa, Lucian
%Y Vucetic, Slobodan
%S Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F lane-etal-2021-computational
%X Transcribing low resource languages can be challenging in the absence of a good lexicon and trained transcribers. Accordingly, we seek a way to enable interactive transcription whereby the machine amplifies human efforts. This paper presents a data model and a system architecture for interactive transcription, supporting multiple modes of interactivity, increasing the likelihood of finding tasks that engage local participation in language work. The approach also supports other applications which are useful in our context, including spoken document retrieval and language learning.
%R 10.18653/v1/2021.dash-1.16
%U https://aclanthology.org/2021.dash-1.16
%U https://doi.org/10.18653/v1/2021.dash-1.16
%P 105-111
Markdown (Informal)
[A Computational Model for Interactive Transcription](https://aclanthology.org/2021.dash-1.16) (Lane et al., DaSH 2021)
ACL
- William Lane, Mat Bettinson, and Steven Bird. 2021. A Computational Model for Interactive Transcription. In Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances, pages 105–111, Online. Association for Computational Linguistics.