@inproceedings{griggs-etal-2021-towards,
title = "Towards integrated, interactive, and extensible text data analytics with Leam",
author = "Griggs, Peter and
Demiralp, Cagatay and
Rahman, Sajjadur",
editor = "Dragut, Eduard and
Li, Yunyao and
Popa, Lucian and
Vucetic, Slobodan",
booktitle = "Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.dash-1.9",
doi = "10.18653/v1/2021.dash-1.9",
pages = "52--58",
abstract = "From tweets to product reviews, text is ubiquitous on the web and often contains valuable information for both enterprises and consumers. However, the online text is generally noisy and incomplete, requiring users to process and analyze the data to extract insights. While there are systems effective for different stages of text analysis, users lack extensible platforms to support interactive text analysis workflows end-to-end. To facilitate integrated text analytics, we introduce LEAM, which aims at combining the strengths of spreadsheets, computational notebooks, and interactive visualizations. LEAM supports interactive analysis via GUI-based interactions and provides a declarative specification language, implemented based on a visual text algebra, to enable user-guided analysis. We evaluate LEAM through two case studies using two popular Kaggle text analytics workflows to understand the strengths and weaknesses of the system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="griggs-etal-2021-towards">
<titleInfo>
<title>Towards integrated, interactive, and extensible text data analytics with Leam</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Griggs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cagatay</namePart>
<namePart type="family">Demiralp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sajjadur</namePart>
<namePart type="family">Rahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Dragut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucian</namePart>
<namePart type="family">Popa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Slobodan</namePart>
<namePart type="family">Vucetic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>From tweets to product reviews, text is ubiquitous on the web and often contains valuable information for both enterprises and consumers. However, the online text is generally noisy and incomplete, requiring users to process and analyze the data to extract insights. While there are systems effective for different stages of text analysis, users lack extensible platforms to support interactive text analysis workflows end-to-end. To facilitate integrated text analytics, we introduce LEAM, which aims at combining the strengths of spreadsheets, computational notebooks, and interactive visualizations. LEAM supports interactive analysis via GUI-based interactions and provides a declarative specification language, implemented based on a visual text algebra, to enable user-guided analysis. We evaluate LEAM through two case studies using two popular Kaggle text analytics workflows to understand the strengths and weaknesses of the system.</abstract>
<identifier type="citekey">griggs-etal-2021-towards</identifier>
<identifier type="doi">10.18653/v1/2021.dash-1.9</identifier>
<location>
<url>https://aclanthology.org/2021.dash-1.9</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>52</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards integrated, interactive, and extensible text data analytics with Leam
%A Griggs, Peter
%A Demiralp, Cagatay
%A Rahman, Sajjadur
%Y Dragut, Eduard
%Y Li, Yunyao
%Y Popa, Lucian
%Y Vucetic, Slobodan
%S Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F griggs-etal-2021-towards
%X From tweets to product reviews, text is ubiquitous on the web and often contains valuable information for both enterprises and consumers. However, the online text is generally noisy and incomplete, requiring users to process and analyze the data to extract insights. While there are systems effective for different stages of text analysis, users lack extensible platforms to support interactive text analysis workflows end-to-end. To facilitate integrated text analytics, we introduce LEAM, which aims at combining the strengths of spreadsheets, computational notebooks, and interactive visualizations. LEAM supports interactive analysis via GUI-based interactions and provides a declarative specification language, implemented based on a visual text algebra, to enable user-guided analysis. We evaluate LEAM through two case studies using two popular Kaggle text analytics workflows to understand the strengths and weaknesses of the system.
%R 10.18653/v1/2021.dash-1.9
%U https://aclanthology.org/2021.dash-1.9
%U https://doi.org/10.18653/v1/2021.dash-1.9
%P 52-58
Markdown (Informal)
[Towards integrated, interactive, and extensible text data analytics with Leam](https://aclanthology.org/2021.dash-1.9) (Griggs et al., DaSH 2021)
ACL