@inproceedings{chen-kong-2021-cs,
title = "cs@{D}ravidian{L}ang{T}ech-{EACL}2021: Offensive Language Identification Based On Multilingual {BERT} Model",
author = "Chen, Shi and
Kong, Bing",
editor = "Chakravarthi, Bharathi Raja and
Priyadharshini, Ruba and
Kumar M, Anand and
Krishnamurthy, Parameswari and
Sherly, Elizabeth",
booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages",
month = apr,
year = "2021",
address = "Kyiv",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.dravidianlangtech-1.31/",
pages = "230--235",
abstract = "This paper introduces the related content of the task {\textquotedblleft}Offensive Language Identification in Dravidian LANGUAGES-EACL 2021{\textquotedblright}. The task requires us to classify Dravidian languages collected from social media into Not-Offensive, Off-Untargeted, Off-Target-Individual, etc. This data set contains actual annotations in code-mixed text posted by users on Youtube, not from the monolingual text in textbooks. Based on the features of the data set code mixture, we use multilingual BERT and TextCNN for semantic extraction and text classification. In this article, we will show the experiment and result analysis of this task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-kong-2021-cs">
<titleInfo>
<title>cs@DravidianLangTech-EACL2021: Offensive Language Identification Based On Multilingual BERT Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruba</namePart>
<namePart type="family">Priyadharshini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="family">Kumar M</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parameswari</namePart>
<namePart type="family">Krishnamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Sherly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kyiv</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces the related content of the task “Offensive Language Identification in Dravidian LANGUAGES-EACL 2021”. The task requires us to classify Dravidian languages collected from social media into Not-Offensive, Off-Untargeted, Off-Target-Individual, etc. This data set contains actual annotations in code-mixed text posted by users on Youtube, not from the monolingual text in textbooks. Based on the features of the data set code mixture, we use multilingual BERT and TextCNN for semantic extraction and text classification. In this article, we will show the experiment and result analysis of this task.</abstract>
<identifier type="citekey">chen-kong-2021-cs</identifier>
<location>
<url>https://aclanthology.org/2021.dravidianlangtech-1.31/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>230</start>
<end>235</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T cs@DravidianLangTech-EACL2021: Offensive Language Identification Based On Multilingual BERT Model
%A Chen, Shi
%A Kong, Bing
%Y Chakravarthi, Bharathi Raja
%Y Priyadharshini, Ruba
%Y Kumar M, Anand
%Y Krishnamurthy, Parameswari
%Y Sherly, Elizabeth
%S Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kyiv
%F chen-kong-2021-cs
%X This paper introduces the related content of the task “Offensive Language Identification in Dravidian LANGUAGES-EACL 2021”. The task requires us to classify Dravidian languages collected from social media into Not-Offensive, Off-Untargeted, Off-Target-Individual, etc. This data set contains actual annotations in code-mixed text posted by users on Youtube, not from the monolingual text in textbooks. Based on the features of the data set code mixture, we use multilingual BERT and TextCNN for semantic extraction and text classification. In this article, we will show the experiment and result analysis of this task.
%U https://aclanthology.org/2021.dravidianlangtech-1.31/
%P 230-235
Markdown (Informal)
[cs@DravidianLangTech-EACL2021: Offensive Language Identification Based On Multilingual BERT Model](https://aclanthology.org/2021.dravidianlangtech-1.31/) (Chen & Kong, DravidianLangTech 2021)
ACL