@inproceedings{chatterjee-etal-2021-joint,
title = "Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification",
author = "Chatterjee, Soumya and
Maheshwari, Ayush and
Ramakrishnan, Ganesh and
Jagarlapudi, Saketha Nath",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.247",
doi = "10.18653/v1/2021.eacl-main.247",
pages = "2829--2841",
abstract = "We consider the problem of multi-label classification, where the labels lie on a hierarchy. However, unlike most existing works in hierarchical multi-label classification, we do not assume that the label-hierarchy is known. Encouraged by the recent success of hyperbolic embeddings in capturing hierarchical relations, we propose to jointly learn the classifier parameters as well as the label embeddings. Such a joint learning is expected to provide a twofold advantage: i) the classifier generalises better as it leverages the prior knowledge of existence of a hierarchy over the labels, and ii) in addition to the label co-occurrence information, the label-embedding may benefit from the manifold structure of the input datapoints, leading to embeddings that are more faithful to the label hierarchy. We propose a novel formulation for the joint learning and empirically evaluate its efficacy. The results show that the joint learning improves over the baseline that employs label co-occurrence based pre-trained hyperbolic embeddings. Moreover, the proposed classifiers achieve state-of-the-art generalization on standard benchmarks. We also present evaluation of the hyperbolic embeddings obtained by joint learning and show that they represent the hierarchy more accurately than the other alternatives.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chatterjee-etal-2021-joint">
<titleInfo>
<title>Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soumya</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayush</namePart>
<namePart type="family">Maheshwari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ganesh</namePart>
<namePart type="family">Ramakrishnan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saketha</namePart>
<namePart type="given">Nath</namePart>
<namePart type="family">Jagarlapudi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider the problem of multi-label classification, where the labels lie on a hierarchy. However, unlike most existing works in hierarchical multi-label classification, we do not assume that the label-hierarchy is known. Encouraged by the recent success of hyperbolic embeddings in capturing hierarchical relations, we propose to jointly learn the classifier parameters as well as the label embeddings. Such a joint learning is expected to provide a twofold advantage: i) the classifier generalises better as it leverages the prior knowledge of existence of a hierarchy over the labels, and ii) in addition to the label co-occurrence information, the label-embedding may benefit from the manifold structure of the input datapoints, leading to embeddings that are more faithful to the label hierarchy. We propose a novel formulation for the joint learning and empirically evaluate its efficacy. The results show that the joint learning improves over the baseline that employs label co-occurrence based pre-trained hyperbolic embeddings. Moreover, the proposed classifiers achieve state-of-the-art generalization on standard benchmarks. We also present evaluation of the hyperbolic embeddings obtained by joint learning and show that they represent the hierarchy more accurately than the other alternatives.</abstract>
<identifier type="citekey">chatterjee-etal-2021-joint</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.247</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.247</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>2829</start>
<end>2841</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification
%A Chatterjee, Soumya
%A Maheshwari, Ayush
%A Ramakrishnan, Ganesh
%A Jagarlapudi, Saketha Nath
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F chatterjee-etal-2021-joint
%X We consider the problem of multi-label classification, where the labels lie on a hierarchy. However, unlike most existing works in hierarchical multi-label classification, we do not assume that the label-hierarchy is known. Encouraged by the recent success of hyperbolic embeddings in capturing hierarchical relations, we propose to jointly learn the classifier parameters as well as the label embeddings. Such a joint learning is expected to provide a twofold advantage: i) the classifier generalises better as it leverages the prior knowledge of existence of a hierarchy over the labels, and ii) in addition to the label co-occurrence information, the label-embedding may benefit from the manifold structure of the input datapoints, leading to embeddings that are more faithful to the label hierarchy. We propose a novel formulation for the joint learning and empirically evaluate its efficacy. The results show that the joint learning improves over the baseline that employs label co-occurrence based pre-trained hyperbolic embeddings. Moreover, the proposed classifiers achieve state-of-the-art generalization on standard benchmarks. We also present evaluation of the hyperbolic embeddings obtained by joint learning and show that they represent the hierarchy more accurately than the other alternatives.
%R 10.18653/v1/2021.eacl-main.247
%U https://aclanthology.org/2021.eacl-main.247
%U https://doi.org/10.18653/v1/2021.eacl-main.247
%P 2829-2841
Markdown (Informal)
[Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification](https://aclanthology.org/2021.eacl-main.247) (Chatterjee et al., EACL 2021)
ACL