@inproceedings{chang-etal-2021-killing,
title = "{``}Killing Me{''} Is Not a Spoiler: Spoiler Detection Model using Graph Neural Networks with Dependency Relation-Aware Attention Mechanism",
author = "Chang, Buru and
Lee, Inggeol and
Kim, Hyunjae and
Kang, Jaewoo",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.315",
doi = "10.18653/v1/2021.eacl-main.315",
pages = "3613--3617",
abstract = "Several machine learning-based spoiler detection models have been proposed recently to protect users from spoilers on review websites. Although dependency relations between context words are important for detecting spoilers, current attention-based spoiler detection models are insufficient for utilizing dependency relations. To address this problem, we propose a new spoiler detection model called SDGNN that is based on syntax-aware graph neural networks. In the experiments on two real-world benchmark datasets, we show that our SDGNN outperforms the existing spoiler detection models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chang-etal-2021-killing">
<titleInfo>
<title>“Killing Me” Is Not a Spoiler: Spoiler Detection Model using Graph Neural Networks with Dependency Relation-Aware Attention Mechanism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Buru</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inggeol</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyunjae</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaewoo</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Several machine learning-based spoiler detection models have been proposed recently to protect users from spoilers on review websites. Although dependency relations between context words are important for detecting spoilers, current attention-based spoiler detection models are insufficient for utilizing dependency relations. To address this problem, we propose a new spoiler detection model called SDGNN that is based on syntax-aware graph neural networks. In the experiments on two real-world benchmark datasets, we show that our SDGNN outperforms the existing spoiler detection models.</abstract>
<identifier type="citekey">chang-etal-2021-killing</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.315</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.315</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>3613</start>
<end>3617</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T “Killing Me” Is Not a Spoiler: Spoiler Detection Model using Graph Neural Networks with Dependency Relation-Aware Attention Mechanism
%A Chang, Buru
%A Lee, Inggeol
%A Kim, Hyunjae
%A Kang, Jaewoo
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F chang-etal-2021-killing
%X Several machine learning-based spoiler detection models have been proposed recently to protect users from spoilers on review websites. Although dependency relations between context words are important for detecting spoilers, current attention-based spoiler detection models are insufficient for utilizing dependency relations. To address this problem, we propose a new spoiler detection model called SDGNN that is based on syntax-aware graph neural networks. In the experiments on two real-world benchmark datasets, we show that our SDGNN outperforms the existing spoiler detection models.
%R 10.18653/v1/2021.eacl-main.315
%U https://aclanthology.org/2021.eacl-main.315
%U https://doi.org/10.18653/v1/2021.eacl-main.315
%P 3613-3617
Markdown (Informal)
[“Killing Me” Is Not a Spoiler: Spoiler Detection Model using Graph Neural Networks with Dependency Relation-Aware Attention Mechanism](https://aclanthology.org/2021.eacl-main.315) (Chang et al., EACL 2021)
ACL