@inproceedings{gogoulou-etal-2021-predicting,
title = "Predicting Treatment Outcome from Patient Texts:The Case of {I}nternet-Based Cognitive Behavioural Therapy",
author = "Gogoulou, Evangelia and
Boman, Magnus and
Ben Abdesslem, Fehmi and
Hentati Isacsson, Nils and
Kaldo, Viktor and
Sahlgren, Magnus",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.46/",
doi = "10.18653/v1/2021.eacl-main.46",
pages = "575--580",
abstract = "We investigate the feasibility of applying standard text categorisation methods to patient text in order to predict treatment outcome in Internet-based cognitive behavioural therapy. The data set is unique in its detail and size for regular care for depression, social anxiety, and panic disorder. Our results indicate that there is a signal in the depression data, albeit a weak one. We also perform terminological and sentiment analysis, which confirm those results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gogoulou-etal-2021-predicting">
<titleInfo>
<title>Predicting Treatment Outcome from Patient Texts:The Case of Internet-Based Cognitive Behavioural Therapy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Evangelia</namePart>
<namePart type="family">Gogoulou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magnus</namePart>
<namePart type="family">Boman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fehmi</namePart>
<namePart type="family">Ben Abdesslem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Hentati Isacsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viktor</namePart>
<namePart type="family">Kaldo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magnus</namePart>
<namePart type="family">Sahlgren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the feasibility of applying standard text categorisation methods to patient text in order to predict treatment outcome in Internet-based cognitive behavioural therapy. The data set is unique in its detail and size for regular care for depression, social anxiety, and panic disorder. Our results indicate that there is a signal in the depression data, albeit a weak one. We also perform terminological and sentiment analysis, which confirm those results.</abstract>
<identifier type="citekey">gogoulou-etal-2021-predicting</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.46</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.46/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>575</start>
<end>580</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Treatment Outcome from Patient Texts:The Case of Internet-Based Cognitive Behavioural Therapy
%A Gogoulou, Evangelia
%A Boman, Magnus
%A Ben Abdesslem, Fehmi
%A Hentati Isacsson, Nils
%A Kaldo, Viktor
%A Sahlgren, Magnus
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F gogoulou-etal-2021-predicting
%X We investigate the feasibility of applying standard text categorisation methods to patient text in order to predict treatment outcome in Internet-based cognitive behavioural therapy. The data set is unique in its detail and size for regular care for depression, social anxiety, and panic disorder. Our results indicate that there is a signal in the depression data, albeit a weak one. We also perform terminological and sentiment analysis, which confirm those results.
%R 10.18653/v1/2021.eacl-main.46
%U https://aclanthology.org/2021.eacl-main.46/
%U https://doi.org/10.18653/v1/2021.eacl-main.46
%P 575-580
Markdown (Informal)
[Predicting Treatment Outcome from Patient Texts:The Case of Internet-Based Cognitive Behavioural Therapy](https://aclanthology.org/2021.eacl-main.46/) (Gogoulou et al., EACL 2021)
ACL