@inproceedings{al-negheimish-etal-2021-discrete,
title = "Discrete Reasoning Templates for Natural Language Understanding",
author = "Al-Negheimish, Hadeel and
Madhyastha, Pranava and
Russo, Alessandra",
editor = "Sorodoc, Ionut-Teodor and
Sushil, Madhumita and
Takmaz, Ece and
Agirre, Eneko",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-srw.12",
doi = "10.18653/v1/2021.eacl-srw.12",
pages = "80--87",
abstract = "Reasoning about information from multiple parts of a passage to derive an answer is an open challenge for reading-comprehension models. In this paper, we present an approach that reasons about complex questions by decomposing them to simpler subquestions that can take advantage of single-span extraction reading-comprehension models, and derives the final answer according to instructions in a predefined reasoning template. We focus on subtraction based arithmetic questions and evaluate our approach on a subset of the DROP dataset. We show that our approach is competitive with the state of the art while being interpretable and requires little supervision.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="al-negheimish-etal-2021-discrete">
<titleInfo>
<title>Discrete Reasoning Templates for Natural Language Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hadeel</namePart>
<namePart type="family">Al-Negheimish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pranava</namePart>
<namePart type="family">Madhyastha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandra</namePart>
<namePart type="family">Russo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ionut-Teodor</namePart>
<namePart type="family">Sorodoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madhumita</namePart>
<namePart type="family">Sushil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ece</namePart>
<namePart type="family">Takmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eneko</namePart>
<namePart type="family">Agirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reasoning about information from multiple parts of a passage to derive an answer is an open challenge for reading-comprehension models. In this paper, we present an approach that reasons about complex questions by decomposing them to simpler subquestions that can take advantage of single-span extraction reading-comprehension models, and derives the final answer according to instructions in a predefined reasoning template. We focus on subtraction based arithmetic questions and evaluate our approach on a subset of the DROP dataset. We show that our approach is competitive with the state of the art while being interpretable and requires little supervision.</abstract>
<identifier type="citekey">al-negheimish-etal-2021-discrete</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-srw.12</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-srw.12</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>80</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discrete Reasoning Templates for Natural Language Understanding
%A Al-Negheimish, Hadeel
%A Madhyastha, Pranava
%A Russo, Alessandra
%Y Sorodoc, Ionut-Teodor
%Y Sushil, Madhumita
%Y Takmaz, Ece
%Y Agirre, Eneko
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F al-negheimish-etal-2021-discrete
%X Reasoning about information from multiple parts of a passage to derive an answer is an open challenge for reading-comprehension models. In this paper, we present an approach that reasons about complex questions by decomposing them to simpler subquestions that can take advantage of single-span extraction reading-comprehension models, and derives the final answer according to instructions in a predefined reasoning template. We focus on subtraction based arithmetic questions and evaluate our approach on a subset of the DROP dataset. We show that our approach is competitive with the state of the art while being interpretable and requires little supervision.
%R 10.18653/v1/2021.eacl-srw.12
%U https://aclanthology.org/2021.eacl-srw.12
%U https://doi.org/10.18653/v1/2021.eacl-srw.12
%P 80-87
Markdown (Informal)
[Discrete Reasoning Templates for Natural Language Understanding](https://aclanthology.org/2021.eacl-srw.12) (Al-Negheimish et al., EACL 2021)
ACL
- Hadeel Al-Negheimish, Pranava Madhyastha, and Alessandra Russo. 2021. Discrete Reasoning Templates for Natural Language Understanding. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 80–87, Online. Association for Computational Linguistics.