@inproceedings{ait-mokhtar-etal-2021-semantic,
title = "Semantic Context Path Labeling for Semantic Exploration of User Reviews",
author = {A{\"i}t-Mokhtar, Salah and
Brun, Caroline and
Hoppenot, Yves and
Sandor, Agnes},
editor = "Adel, Heike and
Shi, Shuming",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.13/",
doi = "10.18653/v1/2021.emnlp-demo.13",
pages = "106--113",
abstract = "In this paper we present a prototype demonstrator showcasing a novel method to perform semantic exploration of user reviews. The system enables effective navigation in a rich contextual semantic schema with a large number of structured classes indicating relevant information. In order to identify instances of the structured classes in the reviews, we defined a new Information Extraction task called Semantic Context Path (SCP) labeling, which simultaneously assigns types and semantic roles to entity mentions. Reviews can rapidly be explored based on the fine-grained and structured semantic classes. As a proof-of-concept, we have implemented this system for reviews on Points-of-Interest, in English and Korean."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ait-mokhtar-etal-2021-semantic">
<titleInfo>
<title>Semantic Context Path Labeling for Semantic Exploration of User Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salah</namePart>
<namePart type="family">Aït-Mokhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caroline</namePart>
<namePart type="family">Brun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Hoppenot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agnes</namePart>
<namePart type="family">Sandor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heike</namePart>
<namePart type="family">Adel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuming</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present a prototype demonstrator showcasing a novel method to perform semantic exploration of user reviews. The system enables effective navigation in a rich contextual semantic schema with a large number of structured classes indicating relevant information. In order to identify instances of the structured classes in the reviews, we defined a new Information Extraction task called Semantic Context Path (SCP) labeling, which simultaneously assigns types and semantic roles to entity mentions. Reviews can rapidly be explored based on the fine-grained and structured semantic classes. As a proof-of-concept, we have implemented this system for reviews on Points-of-Interest, in English and Korean.</abstract>
<identifier type="citekey">ait-mokhtar-etal-2021-semantic</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-demo.13</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-demo.13/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>106</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Context Path Labeling for Semantic Exploration of User Reviews
%A Aït-Mokhtar, Salah
%A Brun, Caroline
%A Hoppenot, Yves
%A Sandor, Agnes
%Y Adel, Heike
%Y Shi, Shuming
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F ait-mokhtar-etal-2021-semantic
%X In this paper we present a prototype demonstrator showcasing a novel method to perform semantic exploration of user reviews. The system enables effective navigation in a rich contextual semantic schema with a large number of structured classes indicating relevant information. In order to identify instances of the structured classes in the reviews, we defined a new Information Extraction task called Semantic Context Path (SCP) labeling, which simultaneously assigns types and semantic roles to entity mentions. Reviews can rapidly be explored based on the fine-grained and structured semantic classes. As a proof-of-concept, we have implemented this system for reviews on Points-of-Interest, in English and Korean.
%R 10.18653/v1/2021.emnlp-demo.13
%U https://aclanthology.org/2021.emnlp-demo.13/
%U https://doi.org/10.18653/v1/2021.emnlp-demo.13
%P 106-113
Markdown (Informal)
[Semantic Context Path Labeling for Semantic Exploration of User Reviews](https://aclanthology.org/2021.emnlp-demo.13/) (Aït-Mokhtar et al., EMNLP 2021)
ACL
- Salah Aït-Mokhtar, Caroline Brun, Yves Hoppenot, and Agnes Sandor. 2021. Semantic Context Path Labeling for Semantic Exploration of User Reviews. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 106–113, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.