@inproceedings{elsherief-etal-2021-latent,
title = "Latent Hatred: A Benchmark for Understanding Implicit Hate Speech",
author = "ElSherief, Mai and
Ziems, Caleb and
Muchlinski, David and
Anupindi, Vaishnavi and
Seybolt, Jordyn and
De Choudhury, Munmun and
Yang, Diyi",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.29",
doi = "10.18653/v1/2021.emnlp-main.29",
pages = "345--363",
abstract = "Hate speech has grown significantly on social media, causing serious consequences for victims of all demographics. Despite much attention being paid to characterize and detect discriminatory speech, most work has focused on explicit or overt hate speech, failing to address a more pervasive form based on coded or indirect language. To fill this gap, this work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message and its implication. We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech, and we discuss key features that challenge existing models. This dataset will continue to serve as a useful benchmark for understanding this multifaceted issue.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elsherief-etal-2021-latent">
<titleInfo>
<title>Latent Hatred: A Benchmark for Understanding Implicit Hate Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mai</namePart>
<namePart type="family">ElSherief</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caleb</namePart>
<namePart type="family">Ziems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Muchlinski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vaishnavi</namePart>
<namePart type="family">Anupindi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordyn</namePart>
<namePart type="family">Seybolt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Munmun</namePart>
<namePart type="family">De Choudhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hate speech has grown significantly on social media, causing serious consequences for victims of all demographics. Despite much attention being paid to characterize and detect discriminatory speech, most work has focused on explicit or overt hate speech, failing to address a more pervasive form based on coded or indirect language. To fill this gap, this work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message and its implication. We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech, and we discuss key features that challenge existing models. This dataset will continue to serve as a useful benchmark for understanding this multifaceted issue.</abstract>
<identifier type="citekey">elsherief-etal-2021-latent</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.29</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.29</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>345</start>
<end>363</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Latent Hatred: A Benchmark for Understanding Implicit Hate Speech
%A ElSherief, Mai
%A Ziems, Caleb
%A Muchlinski, David
%A Anupindi, Vaishnavi
%A Seybolt, Jordyn
%A De Choudhury, Munmun
%A Yang, Diyi
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F elsherief-etal-2021-latent
%X Hate speech has grown significantly on social media, causing serious consequences for victims of all demographics. Despite much attention being paid to characterize and detect discriminatory speech, most work has focused on explicit or overt hate speech, failing to address a more pervasive form based on coded or indirect language. To fill this gap, this work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message and its implication. We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech, and we discuss key features that challenge existing models. This dataset will continue to serve as a useful benchmark for understanding this multifaceted issue.
%R 10.18653/v1/2021.emnlp-main.29
%U https://aclanthology.org/2021.emnlp-main.29
%U https://doi.org/10.18653/v1/2021.emnlp-main.29
%P 345-363
Markdown (Informal)
[Latent Hatred: A Benchmark for Understanding Implicit Hate Speech](https://aclanthology.org/2021.emnlp-main.29) (ElSherief et al., EMNLP 2021)
ACL
- Mai ElSherief, Caleb Ziems, David Muchlinski, Vaishnavi Anupindi, Jordyn Seybolt, Munmun De Choudhury, and Diyi Yang. 2021. Latent Hatred: A Benchmark for Understanding Implicit Hate Speech. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 345–363, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.