@inproceedings{giulianelli-etal-2021-information,
title = "Is Information Density Uniform in Task-Oriented Dialogues?",
author = "Giulianelli, Mario and
Sinclair, Arabella and
Fern{\'a}ndez, Raquel",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.652",
doi = "10.18653/v1/2021.emnlp-main.652",
pages = "8271--8283",
abstract = "The Uniform Information Density principle states that speakers plan their utterances to reduce fluctuations in the density of the information transmitted. In this paper, we test whether, and within which contextual units this principle holds in task-oriented dialogues. We show that there is evidence supporting the principle in written dialogues where participants play a cooperative reference game as well as in spoken dialogues involving instruction giving and following. Our study underlines the importance of identifying the relevant contextual components, showing that information content increases particularly within topically and referentially related contextual units.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giulianelli-etal-2021-information">
<titleInfo>
<title>Is Information Density Uniform in Task-Oriented Dialogues?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arabella</namePart>
<namePart type="family">Sinclair</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Uniform Information Density principle states that speakers plan their utterances to reduce fluctuations in the density of the information transmitted. In this paper, we test whether, and within which contextual units this principle holds in task-oriented dialogues. We show that there is evidence supporting the principle in written dialogues where participants play a cooperative reference game as well as in spoken dialogues involving instruction giving and following. Our study underlines the importance of identifying the relevant contextual components, showing that information content increases particularly within topically and referentially related contextual units.</abstract>
<identifier type="citekey">giulianelli-etal-2021-information</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.652</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.652</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>8271</start>
<end>8283</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Is Information Density Uniform in Task-Oriented Dialogues?
%A Giulianelli, Mario
%A Sinclair, Arabella
%A Fernández, Raquel
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F giulianelli-etal-2021-information
%X The Uniform Information Density principle states that speakers plan their utterances to reduce fluctuations in the density of the information transmitted. In this paper, we test whether, and within which contextual units this principle holds in task-oriented dialogues. We show that there is evidence supporting the principle in written dialogues where participants play a cooperative reference game as well as in spoken dialogues involving instruction giving and following. Our study underlines the importance of identifying the relevant contextual components, showing that information content increases particularly within topically and referentially related contextual units.
%R 10.18653/v1/2021.emnlp-main.652
%U https://aclanthology.org/2021.emnlp-main.652
%U https://doi.org/10.18653/v1/2021.emnlp-main.652
%P 8271-8283
Markdown (Informal)
[Is Information Density Uniform in Task-Oriented Dialogues?](https://aclanthology.org/2021.emnlp-main.652) (Giulianelli et al., EMNLP 2021)
ACL
- Mario Giulianelli, Arabella Sinclair, and Raquel Fernández. 2021. Is Information Density Uniform in Task-Oriented Dialogues?. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8271–8283, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.