@inproceedings{ma-etal-2021-semantic,
title = "Semantic Novelty Detection in Natural Language Descriptions",
author = "Ma, Nianzu and
Politowicz, Alexander and
Mazumder, Sahisnu and
Chen, Jiahua and
Liu, Bing and
Robertson, Eric and
Grigsby, Scott",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.66/",
doi = "10.18653/v1/2021.emnlp-main.66",
pages = "866--882",
abstract = "This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says {\textquotedblleft}A man is walking a chicken in the park{\textquotedblright}, it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2021-semantic">
<titleInfo>
<title>Semantic Novelty Detection in Natural Language Descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nianzu</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Politowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sahisnu</namePart>
<namePart type="family">Mazumder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahua</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Robertson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="family">Grigsby</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says “A man is walking a chicken in the park”, it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins.</abstract>
<identifier type="citekey">ma-etal-2021-semantic</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.66</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.66/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>866</start>
<end>882</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Novelty Detection in Natural Language Descriptions
%A Ma, Nianzu
%A Politowicz, Alexander
%A Mazumder, Sahisnu
%A Chen, Jiahua
%A Liu, Bing
%A Robertson, Eric
%A Grigsby, Scott
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F ma-etal-2021-semantic
%X This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says “A man is walking a chicken in the park”, it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins.
%R 10.18653/v1/2021.emnlp-main.66
%U https://aclanthology.org/2021.emnlp-main.66/
%U https://doi.org/10.18653/v1/2021.emnlp-main.66
%P 866-882
Markdown (Informal)
[Semantic Novelty Detection in Natural Language Descriptions](https://aclanthology.org/2021.emnlp-main.66/) (Ma et al., EMNLP 2021)
ACL
- Nianzu Ma, Alexander Politowicz, Sahisnu Mazumder, Jiahua Chen, Bing Liu, Eric Robertson, and Scott Grigsby. 2021. Semantic Novelty Detection in Natural Language Descriptions. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 866–882, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.