@inproceedings{xu-yvon-2021-one,
title = "One Source, Two Targets: {C}hallenges and Rewards of Dual Decoding",
author = "Xu, Jitao and
Yvon, Fran{\c{c}}ois",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.671/",
doi = "10.18653/v1/2021.emnlp-main.671",
pages = "8533--8546",
abstract = "Machine translation is generally understood as generating one target text from an input source document. In this paper, we consider a stronger requirement: to jointly generate two texts so that each output side effectively depends on the other. As we discuss, such a device serves several practical purposes, from multi-target machine translation to the generation of controlled variations of the target text. We present an analysis of possible implementations of dual decoding, and experiment with four applications. Viewing the problem from multiple angles allows us to better highlight the challenges of dual decoding and to also thoroughly analyze the benefits of generating matched, rather than independent, translations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-yvon-2021-one">
<titleInfo>
<title>One Source, Two Targets: Challenges and Rewards of Dual Decoding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jitao</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine translation is generally understood as generating one target text from an input source document. In this paper, we consider a stronger requirement: to jointly generate two texts so that each output side effectively depends on the other. As we discuss, such a device serves several practical purposes, from multi-target machine translation to the generation of controlled variations of the target text. We present an analysis of possible implementations of dual decoding, and experiment with four applications. Viewing the problem from multiple angles allows us to better highlight the challenges of dual decoding and to also thoroughly analyze the benefits of generating matched, rather than independent, translations.</abstract>
<identifier type="citekey">xu-yvon-2021-one</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.671</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.671/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>8533</start>
<end>8546</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T One Source, Two Targets: Challenges and Rewards of Dual Decoding
%A Xu, Jitao
%A Yvon, François
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F xu-yvon-2021-one
%X Machine translation is generally understood as generating one target text from an input source document. In this paper, we consider a stronger requirement: to jointly generate two texts so that each output side effectively depends on the other. As we discuss, such a device serves several practical purposes, from multi-target machine translation to the generation of controlled variations of the target text. We present an analysis of possible implementations of dual decoding, and experiment with four applications. Viewing the problem from multiple angles allows us to better highlight the challenges of dual decoding and to also thoroughly analyze the benefits of generating matched, rather than independent, translations.
%R 10.18653/v1/2021.emnlp-main.671
%U https://aclanthology.org/2021.emnlp-main.671/
%U https://doi.org/10.18653/v1/2021.emnlp-main.671
%P 8533-8546
Markdown (Informal)
[One Source, Two Targets: Challenges and Rewards of Dual Decoding](https://aclanthology.org/2021.emnlp-main.671/) (Xu & Yvon, EMNLP 2021)
ACL