@inproceedings{polak-etal-2021-explainable,
title = "Explainable Quality Estimation: {CUNI} {E}val4{NLP} Submission",
author = "Pol{\'a}k, Peter and
Singh, Muskaan and
Bojar, Ond{\v{r}}ej",
editor = "Gao, Yang and
Eger, Steffen and
Zhao, Wei and
Lertvittayakumjorn, Piyawat and
Fomicheva, Marina",
booktitle = "Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eval4nlp-1.24/",
doi = "10.18653/v1/2021.eval4nlp-1.24",
pages = "250--255",
abstract = "This paper describes our participating system in the shared task Explainable quality estimation of 2nd Workshop on Evaluation {\&} Comparison of NLP Systems. The task of quality estimation (QE, a.k.a. reference-free evaluation) is to predict the quality of MT output at inference time without access to reference translations. In this proposed work, we first build a word-level quality estimation model, then we finetune this model for sentence-level QE. Our proposed models achieve near state-of-the-art results. In the word-level QE, we place 2nd and 3rd on the supervised Ro-En and Et-En test sets. In the sentence-level QE, we achieve a relative improvement of 8.86{\%} (Ro-En) and 10.6{\%} (Et-En) in terms of the Pearson correlation coefficient over the baseline model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="polak-etal-2021-explainable">
<titleInfo>
<title>Explainable Quality Estimation: CUNI Eval4NLP Submission</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Polák</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muskaan</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steffen</namePart>
<namePart type="family">Eger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piyawat</namePart>
<namePart type="family">Lertvittayakumjorn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marina</namePart>
<namePart type="family">Fomicheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our participating system in the shared task Explainable quality estimation of 2nd Workshop on Evaluation & Comparison of NLP Systems. The task of quality estimation (QE, a.k.a. reference-free evaluation) is to predict the quality of MT output at inference time without access to reference translations. In this proposed work, we first build a word-level quality estimation model, then we finetune this model for sentence-level QE. Our proposed models achieve near state-of-the-art results. In the word-level QE, we place 2nd and 3rd on the supervised Ro-En and Et-En test sets. In the sentence-level QE, we achieve a relative improvement of 8.86% (Ro-En) and 10.6% (Et-En) in terms of the Pearson correlation coefficient over the baseline model.</abstract>
<identifier type="citekey">polak-etal-2021-explainable</identifier>
<identifier type="doi">10.18653/v1/2021.eval4nlp-1.24</identifier>
<location>
<url>https://aclanthology.org/2021.eval4nlp-1.24/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>250</start>
<end>255</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explainable Quality Estimation: CUNI Eval4NLP Submission
%A Polák, Peter
%A Singh, Muskaan
%A Bojar, Ondřej
%Y Gao, Yang
%Y Eger, Steffen
%Y Zhao, Wei
%Y Lertvittayakumjorn, Piyawat
%Y Fomicheva, Marina
%S Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F polak-etal-2021-explainable
%X This paper describes our participating system in the shared task Explainable quality estimation of 2nd Workshop on Evaluation & Comparison of NLP Systems. The task of quality estimation (QE, a.k.a. reference-free evaluation) is to predict the quality of MT output at inference time without access to reference translations. In this proposed work, we first build a word-level quality estimation model, then we finetune this model for sentence-level QE. Our proposed models achieve near state-of-the-art results. In the word-level QE, we place 2nd and 3rd on the supervised Ro-En and Et-En test sets. In the sentence-level QE, we achieve a relative improvement of 8.86% (Ro-En) and 10.6% (Et-En) in terms of the Pearson correlation coefficient over the baseline model.
%R 10.18653/v1/2021.eval4nlp-1.24
%U https://aclanthology.org/2021.eval4nlp-1.24/
%U https://doi.org/10.18653/v1/2021.eval4nlp-1.24
%P 250-255
Markdown (Informal)
[Explainable Quality Estimation: CUNI Eval4NLP Submission](https://aclanthology.org/2021.eval4nlp-1.24/) (Polák et al., Eval4NLP 2021)
ACL