@inproceedings{effenberger-etal-2021-analysis-language,
title = "Analysis of Language Change in Collaborative Instruction Following",
author = "Effenberger, Anna and
Singh, Rhia and
Yan, Eva and
Suhr, Alane and
Artzi, Yoav",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.239",
doi = "10.18653/v1/2021.findings-emnlp.239",
pages = "2803--2811",
abstract = "We analyze language change over time in a collaborative, goal-oriented instructional task, where utility-maximizing participants form conventions and increase their expertise. Prior work studied such scenarios mostly in the context of reference games, and consistently found that language complexity is reduced along multiple dimensions, such as utterance length, as conventions are formed. In contrast, we find that, given the ability to increase instruction utility, instructors increase language complexity along these previously studied dimensions to better collaborate with increasingly skilled instruction followers.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="effenberger-etal-2021-analysis-language">
<titleInfo>
<title>Analysis of Language Change in Collaborative Instruction Following</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Effenberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rhia</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alane</namePart>
<namePart type="family">Suhr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Artzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We analyze language change over time in a collaborative, goal-oriented instructional task, where utility-maximizing participants form conventions and increase their expertise. Prior work studied such scenarios mostly in the context of reference games, and consistently found that language complexity is reduced along multiple dimensions, such as utterance length, as conventions are formed. In contrast, we find that, given the ability to increase instruction utility, instructors increase language complexity along these previously studied dimensions to better collaborate with increasingly skilled instruction followers.</abstract>
<identifier type="citekey">effenberger-etal-2021-analysis-language</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.239</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.239</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>2803</start>
<end>2811</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analysis of Language Change in Collaborative Instruction Following
%A Effenberger, Anna
%A Singh, Rhia
%A Yan, Eva
%A Suhr, Alane
%A Artzi, Yoav
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F effenberger-etal-2021-analysis-language
%X We analyze language change over time in a collaborative, goal-oriented instructional task, where utility-maximizing participants form conventions and increase their expertise. Prior work studied such scenarios mostly in the context of reference games, and consistently found that language complexity is reduced along multiple dimensions, such as utterance length, as conventions are formed. In contrast, we find that, given the ability to increase instruction utility, instructors increase language complexity along these previously studied dimensions to better collaborate with increasingly skilled instruction followers.
%R 10.18653/v1/2021.findings-emnlp.239
%U https://aclanthology.org/2021.findings-emnlp.239
%U https://doi.org/10.18653/v1/2021.findings-emnlp.239
%P 2803-2811
Markdown (Informal)
[Analysis of Language Change in Collaborative Instruction Following](https://aclanthology.org/2021.findings-emnlp.239) (Effenberger et al., Findings 2021)
ACL