@inproceedings{nooralahzadeh-etal-2021-progressive-transformer,
title = "Progressive Transformer-Based Generation of Radiology Reports",
author = "Nooralahzadeh, Farhad and
Perez Gonzalez, Nicolas and
Frauenfelder, Thomas and
Fujimoto, Koji and
Krauthammer, Michael",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.241",
doi = "10.18653/v1/2021.findings-emnlp.241",
pages = "2824--2832",
abstract = "Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at once, the model generates global concepts from the image in the first step and then reforms them into finer and coherent texts using transformer-based architecture. We follow the transformer-based sequence-to-sequence paradigm at each step. We improve upon the state-of-the-art on two benchmark datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nooralahzadeh-etal-2021-progressive-transformer">
<titleInfo>
<title>Progressive Transformer-Based Generation of Radiology Reports</title>
</titleInfo>
<name type="personal">
<namePart type="given">Farhad</namePart>
<namePart type="family">Nooralahzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Perez Gonzalez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Frauenfelder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koji</namePart>
<namePart type="family">Fujimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Krauthammer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at once, the model generates global concepts from the image in the first step and then reforms them into finer and coherent texts using transformer-based architecture. We follow the transformer-based sequence-to-sequence paradigm at each step. We improve upon the state-of-the-art on two benchmark datasets.</abstract>
<identifier type="citekey">nooralahzadeh-etal-2021-progressive-transformer</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.241</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.241</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>2824</start>
<end>2832</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Progressive Transformer-Based Generation of Radiology Reports
%A Nooralahzadeh, Farhad
%A Perez Gonzalez, Nicolas
%A Frauenfelder, Thomas
%A Fujimoto, Koji
%A Krauthammer, Michael
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F nooralahzadeh-etal-2021-progressive-transformer
%X Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at once, the model generates global concepts from the image in the first step and then reforms them into finer and coherent texts using transformer-based architecture. We follow the transformer-based sequence-to-sequence paradigm at each step. We improve upon the state-of-the-art on two benchmark datasets.
%R 10.18653/v1/2021.findings-emnlp.241
%U https://aclanthology.org/2021.findings-emnlp.241
%U https://doi.org/10.18653/v1/2021.findings-emnlp.241
%P 2824-2832
Markdown (Informal)
[Progressive Transformer-Based Generation of Radiology Reports](https://aclanthology.org/2021.findings-emnlp.241) (Nooralahzadeh et al., Findings 2021)
ACL
- Farhad Nooralahzadeh, Nicolas Perez Gonzalez, Thomas Frauenfelder, Koji Fujimoto, and Michael Krauthammer. 2021. Progressive Transformer-Based Generation of Radiology Reports. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2824–2832, Punta Cana, Dominican Republic. Association for Computational Linguistics.