@inproceedings{zhang-etal-2021-none-severe,
title = "From None to Severe: {P}redicting Severity in Movie Scripts",
author = "Zhang, Yigeng and
Shafaei, Mahsa and
Gonzalez, Fabio and
Solorio, Thamar",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.332",
doi = "10.18653/v1/2021.findings-emnlp.332",
pages = "3951--3956",
abstract = "In this paper, we introduce the task of predicting severity of age-restricted aspects of movie content based solely on the dialogue script. We first investigate categorizing the ordinal severity of movies on 5 aspects: Sex, Violence, Profanity, Substance consumption, and Frightening scenes. The problem is handled using a siamese network-based multitask framework which concurrently improves the interpretability of the predictions. The experimental results show that our method outperforms the previous state-of-the-art model and provides useful information to interpret model predictions. The proposed dataset and source code are publicly available at our GitHub repository.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2021-none-severe">
<titleInfo>
<title>From None to Severe: Predicting Severity in Movie Scripts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yigeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahsa</namePart>
<namePart type="family">Shafaei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Gonzalez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce the task of predicting severity of age-restricted aspects of movie content based solely on the dialogue script. We first investigate categorizing the ordinal severity of movies on 5 aspects: Sex, Violence, Profanity, Substance consumption, and Frightening scenes. The problem is handled using a siamese network-based multitask framework which concurrently improves the interpretability of the predictions. The experimental results show that our method outperforms the previous state-of-the-art model and provides useful information to interpret model predictions. The proposed dataset and source code are publicly available at our GitHub repository.</abstract>
<identifier type="citekey">zhang-etal-2021-none-severe</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.332</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.332</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>3951</start>
<end>3956</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From None to Severe: Predicting Severity in Movie Scripts
%A Zhang, Yigeng
%A Shafaei, Mahsa
%A Gonzalez, Fabio
%A Solorio, Thamar
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F zhang-etal-2021-none-severe
%X In this paper, we introduce the task of predicting severity of age-restricted aspects of movie content based solely on the dialogue script. We first investigate categorizing the ordinal severity of movies on 5 aspects: Sex, Violence, Profanity, Substance consumption, and Frightening scenes. The problem is handled using a siamese network-based multitask framework which concurrently improves the interpretability of the predictions. The experimental results show that our method outperforms the previous state-of-the-art model and provides useful information to interpret model predictions. The proposed dataset and source code are publicly available at our GitHub repository.
%R 10.18653/v1/2021.findings-emnlp.332
%U https://aclanthology.org/2021.findings-emnlp.332
%U https://doi.org/10.18653/v1/2021.findings-emnlp.332
%P 3951-3956
Markdown (Informal)
[From None to Severe: Predicting Severity in Movie Scripts](https://aclanthology.org/2021.findings-emnlp.332) (Zhang et al., Findings 2021)
ACL
- Yigeng Zhang, Mahsa Shafaei, Fabio Gonzalez, and Thamar Solorio. 2021. From None to Severe: Predicting Severity in Movie Scripts. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 3951–3956, Punta Cana, Dominican Republic. Association for Computational Linguistics.