@inproceedings{xia-etal-2021-stacked-amr,
title = "Stacked {AMR} Parsing with Silver Data",
author = "Xia, Qingrong and
Li, Zhenghua and
Wang, Rui and
Zhang, Min",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.406",
doi = "10.18653/v1/2021.findings-emnlp.406",
pages = "4729--4738",
abstract = "Lacking sufficient human-annotated data is one main challenge for abstract meaning representation (AMR) parsing. To alleviate this problem, previous works usually make use of silver data or pre-trained language models. In particular, one recent seq-to-seq work directly fine-tunes AMR graph sequences on the encoder-decoder pre-trained language model and achieves new state-of-the-art results, outperforming previous works by a large margin. However, it makes the decoding relatively slower. In this work, we investigate alternative approaches to achieve competitive performance at faster speeds. We propose a simplified AMR parser and a pre-training technique for the effective usage of silver data. We conduct extensive experiments on the widely used AMR2.0 dataset and the results demonstrate that our Transformer-based AMR parser achieves the best performance among the seq2graph-based models. Furthermore, with silver data, our model achieves competitive results with the SOTA model, and the speed is an order of magnitude faster. Detailed analyses are conducted to gain more insights into our proposed model and the effectiveness of the pre-training technique.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xia-etal-2021-stacked-amr">
<titleInfo>
<title>Stacked AMR Parsing with Silver Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qingrong</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenghua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lacking sufficient human-annotated data is one main challenge for abstract meaning representation (AMR) parsing. To alleviate this problem, previous works usually make use of silver data or pre-trained language models. In particular, one recent seq-to-seq work directly fine-tunes AMR graph sequences on the encoder-decoder pre-trained language model and achieves new state-of-the-art results, outperforming previous works by a large margin. However, it makes the decoding relatively slower. In this work, we investigate alternative approaches to achieve competitive performance at faster speeds. We propose a simplified AMR parser and a pre-training technique for the effective usage of silver data. We conduct extensive experiments on the widely used AMR2.0 dataset and the results demonstrate that our Transformer-based AMR parser achieves the best performance among the seq2graph-based models. Furthermore, with silver data, our model achieves competitive results with the SOTA model, and the speed is an order of magnitude faster. Detailed analyses are conducted to gain more insights into our proposed model and the effectiveness of the pre-training technique.</abstract>
<identifier type="citekey">xia-etal-2021-stacked-amr</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.406</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.406</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>4729</start>
<end>4738</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stacked AMR Parsing with Silver Data
%A Xia, Qingrong
%A Li, Zhenghua
%A Wang, Rui
%A Zhang, Min
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F xia-etal-2021-stacked-amr
%X Lacking sufficient human-annotated data is one main challenge for abstract meaning representation (AMR) parsing. To alleviate this problem, previous works usually make use of silver data or pre-trained language models. In particular, one recent seq-to-seq work directly fine-tunes AMR graph sequences on the encoder-decoder pre-trained language model and achieves new state-of-the-art results, outperforming previous works by a large margin. However, it makes the decoding relatively slower. In this work, we investigate alternative approaches to achieve competitive performance at faster speeds. We propose a simplified AMR parser and a pre-training technique for the effective usage of silver data. We conduct extensive experiments on the widely used AMR2.0 dataset and the results demonstrate that our Transformer-based AMR parser achieves the best performance among the seq2graph-based models. Furthermore, with silver data, our model achieves competitive results with the SOTA model, and the speed is an order of magnitude faster. Detailed analyses are conducted to gain more insights into our proposed model and the effectiveness of the pre-training technique.
%R 10.18653/v1/2021.findings-emnlp.406
%U https://aclanthology.org/2021.findings-emnlp.406
%U https://doi.org/10.18653/v1/2021.findings-emnlp.406
%P 4729-4738
Markdown (Informal)
[Stacked AMR Parsing with Silver Data](https://aclanthology.org/2021.findings-emnlp.406) (Xia et al., Findings 2021)
ACL
- Qingrong Xia, Zhenghua Li, Rui Wang, and Min Zhang. 2021. Stacked AMR Parsing with Silver Data. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4729–4738, Punta Cana, Dominican Republic. Association for Computational Linguistics.