@inproceedings{nikishina-etal-2021-evaluation,
title = "Evaluation of Taxonomy Enrichment on Diachronic {W}ord{N}et Versions",
author = "Nikishina, Irina and
Loukachevitch, Natalia and
Logacheva, Varvara and
Panchenko, Alexander",
editor = "Vossen, Piek and
Fellbaum, Christiane",
booktitle = "Proceedings of the 11th Global Wordnet Conference",
month = jan,
year = "2021",
address = "University of South Africa (UNISA)",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2021.gwc-1.15",
pages = "126--136",
abstract = "The vast majority of the existing approaches for taxonomy enrichment apply word embeddings as they have proven to accumulate contexts (in a broad sense) extracted from texts which are sufficient for attaching orphan words to the taxonomy. On the other hand, apart from being large lexical and semantic resources, taxonomies are graph structures. Combining word embeddings with graph structure of taxonomy could be of use for predicting taxonomic relations. In this paper we compare several approaches for attaching new words to the existing taxonomy which are based on the graph representations with the one that relies on fastText embeddings. We test all methods on Russian and English datasets, but they could be also applied to other wordnets and languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nikishina-etal-2021-evaluation">
<titleInfo>
<title>Evaluation of Taxonomy Enrichment on Diachronic WordNet Versions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Irina</namePart>
<namePart type="family">Nikishina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Loukachevitch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Panchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christiane</namePart>
<namePart type="family">Fellbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">University of South Africa (UNISA)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The vast majority of the existing approaches for taxonomy enrichment apply word embeddings as they have proven to accumulate contexts (in a broad sense) extracted from texts which are sufficient for attaching orphan words to the taxonomy. On the other hand, apart from being large lexical and semantic resources, taxonomies are graph structures. Combining word embeddings with graph structure of taxonomy could be of use for predicting taxonomic relations. In this paper we compare several approaches for attaching new words to the existing taxonomy which are based on the graph representations with the one that relies on fastText embeddings. We test all methods on Russian and English datasets, but they could be also applied to other wordnets and languages.</abstract>
<identifier type="citekey">nikishina-etal-2021-evaluation</identifier>
<location>
<url>https://aclanthology.org/2021.gwc-1.15</url>
</location>
<part>
<date>2021-01</date>
<extent unit="page">
<start>126</start>
<end>136</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluation of Taxonomy Enrichment on Diachronic WordNet Versions
%A Nikishina, Irina
%A Loukachevitch, Natalia
%A Logacheva, Varvara
%A Panchenko, Alexander
%Y Vossen, Piek
%Y Fellbaum, Christiane
%S Proceedings of the 11th Global Wordnet Conference
%D 2021
%8 January
%I Global Wordnet Association
%C University of South Africa (UNISA)
%F nikishina-etal-2021-evaluation
%X The vast majority of the existing approaches for taxonomy enrichment apply word embeddings as they have proven to accumulate contexts (in a broad sense) extracted from texts which are sufficient for attaching orphan words to the taxonomy. On the other hand, apart from being large lexical and semantic resources, taxonomies are graph structures. Combining word embeddings with graph structure of taxonomy could be of use for predicting taxonomic relations. In this paper we compare several approaches for attaching new words to the existing taxonomy which are based on the graph representations with the one that relies on fastText embeddings. We test all methods on Russian and English datasets, but they could be also applied to other wordnets and languages.
%U https://aclanthology.org/2021.gwc-1.15
%P 126-136
Markdown (Informal)
[Evaluation of Taxonomy Enrichment on Diachronic WordNet Versions](https://aclanthology.org/2021.gwc-1.15) (Nikishina et al., GWC 2021)
ACL