@inproceedings{zhang-etal-2021-trading,
title = "Trading Off Diversity and Quality in Natural Language Generation",
author = "Zhang, Hugh and
Duckworth, Daniel and
Ippolito, Daphne and
Neelakantan, Arvind",
editor = "Belz, Anya and
Agarwal, Shubham and
Graham, Yvette and
Reiter, Ehud and
Shimorina, Anastasia",
booktitle = "Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.humeval-1.3",
pages = "25--33",
abstract = "For open-ended language generation tasks such as storytelling or dialogue, choosing the right decoding algorithm is vital for controlling the tradeoff between generation \textit{quality} and \textit{diversity}. However, there presently exists no consensus on which decoding procedure is best or even the criteria by which to compare them. In this paper, we cast decoding as a tradeoff between response quality and diversity, and we perform the first large-scale evaluation of decoding methods along the entire quality-diversity spectrum. Our experiments confirm the existence of the likelihood trap: the counter-intuitive observation that high likelihood sequences are often surprisingly low quality. We also find that when diversity is a priority, all methods perform similarly, but when quality is viewed as more important, nucleus sampling (Holtzman et al., 2019) outperforms all other evaluated decoding algorithms.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2021-trading">
<titleInfo>
<title>Trading Off Diversity and Quality in Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hugh</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Duckworth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arvind</namePart>
<namePart type="family">Neelakantan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Shimorina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For open-ended language generation tasks such as storytelling or dialogue, choosing the right decoding algorithm is vital for controlling the tradeoff between generation quality and diversity. However, there presently exists no consensus on which decoding procedure is best or even the criteria by which to compare them. In this paper, we cast decoding as a tradeoff between response quality and diversity, and we perform the first large-scale evaluation of decoding methods along the entire quality-diversity spectrum. Our experiments confirm the existence of the likelihood trap: the counter-intuitive observation that high likelihood sequences are often surprisingly low quality. We also find that when diversity is a priority, all methods perform similarly, but when quality is viewed as more important, nucleus sampling (Holtzman et al., 2019) outperforms all other evaluated decoding algorithms.</abstract>
<identifier type="citekey">zhang-etal-2021-trading</identifier>
<location>
<url>https://aclanthology.org/2021.humeval-1.3</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>25</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Trading Off Diversity and Quality in Natural Language Generation
%A Zhang, Hugh
%A Duckworth, Daniel
%A Ippolito, Daphne
%A Neelakantan, Arvind
%Y Belz, Anya
%Y Agarwal, Shubham
%Y Graham, Yvette
%Y Reiter, Ehud
%Y Shimorina, Anastasia
%S Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F zhang-etal-2021-trading
%X For open-ended language generation tasks such as storytelling or dialogue, choosing the right decoding algorithm is vital for controlling the tradeoff between generation quality and diversity. However, there presently exists no consensus on which decoding procedure is best or even the criteria by which to compare them. In this paper, we cast decoding as a tradeoff between response quality and diversity, and we perform the first large-scale evaluation of decoding methods along the entire quality-diversity spectrum. Our experiments confirm the existence of the likelihood trap: the counter-intuitive observation that high likelihood sequences are often surprisingly low quality. We also find that when diversity is a priority, all methods perform similarly, but when quality is viewed as more important, nucleus sampling (Holtzman et al., 2019) outperforms all other evaluated decoding algorithms.
%U https://aclanthology.org/2021.humeval-1.3
%P 25-33
Markdown (Informal)
[Trading Off Diversity and Quality in Natural Language Generation](https://aclanthology.org/2021.humeval-1.3) (Zhang et al., HumEval 2021)
ACL