@inproceedings{yi-shin-2021-generating,
title = "Generating Slogans with Linguistic Features using Sequence-to-Sequence Transformer",
author = "Yi, Yeoun and
Shin, Hyopil",
editor = "Bandyopadhyay, Sivaji and
Devi, Sobha Lalitha and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the 18th International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2021",
address = "National Institute of Technology Silchar, Silchar, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2021.icon-main.10/",
pages = "75--79",
abstract = "Previous work generating slogans depended on templates or summaries of company descriptions, making it difficult to generate slogans with linguistic features. We present LexPOS, a sequence-to-sequence transformer model that generates slogans given phonetic and structural information. Our model searches for phonetically similar words given user keywords. Both the sound-alike words and user keywords become lexical constraints for generation. For structural repetition, we use POS constraints. Users can specify any repeated phrase structure by POS tags. Our model-generated slogans are more relevant to the original slogans than those of baseline models. They also show phonetic and structural repetition during inference, representative features of memorable slogans."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yi-shin-2021-generating">
<titleInfo>
<title>Generating Slogans with Linguistic Features using Sequence-to-Sequence Transformer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yeoun</namePart>
<namePart type="family">Yi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyopil</namePart>
<namePart type="family">Shin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="given">Lalitha</namePart>
<namePart type="family">Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">National Institute of Technology Silchar, Silchar, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous work generating slogans depended on templates or summaries of company descriptions, making it difficult to generate slogans with linguistic features. We present LexPOS, a sequence-to-sequence transformer model that generates slogans given phonetic and structural information. Our model searches for phonetically similar words given user keywords. Both the sound-alike words and user keywords become lexical constraints for generation. For structural repetition, we use POS constraints. Users can specify any repeated phrase structure by POS tags. Our model-generated slogans are more relevant to the original slogans than those of baseline models. They also show phonetic and structural repetition during inference, representative features of memorable slogans.</abstract>
<identifier type="citekey">yi-shin-2021-generating</identifier>
<location>
<url>https://aclanthology.org/2021.icon-main.10/</url>
</location>
<part>
<date>2021-12</date>
<extent unit="page">
<start>75</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Slogans with Linguistic Features using Sequence-to-Sequence Transformer
%A Yi, Yeoun
%A Shin, Hyopil
%Y Bandyopadhyay, Sivaji
%Y Devi, Sobha Lalitha
%Y Bhattacharyya, Pushpak
%S Proceedings of the 18th International Conference on Natural Language Processing (ICON)
%D 2021
%8 December
%I NLP Association of India (NLPAI)
%C National Institute of Technology Silchar, Silchar, India
%F yi-shin-2021-generating
%X Previous work generating slogans depended on templates or summaries of company descriptions, making it difficult to generate slogans with linguistic features. We present LexPOS, a sequence-to-sequence transformer model that generates slogans given phonetic and structural information. Our model searches for phonetically similar words given user keywords. Both the sound-alike words and user keywords become lexical constraints for generation. For structural repetition, we use POS constraints. Users can specify any repeated phrase structure by POS tags. Our model-generated slogans are more relevant to the original slogans than those of baseline models. They also show phonetic and structural repetition during inference, representative features of memorable slogans.
%U https://aclanthology.org/2021.icon-main.10/
%P 75-79
Markdown (Informal)
[Generating Slogans with Linguistic Features using Sequence-to-Sequence Transformer](https://aclanthology.org/2021.icon-main.10/) (Yi & Shin, ICON 2021)
ACL