@inproceedings{kumari-etal-2021-co,
title = "Co-attention based Multimodal Factorized Bilinear Pooling for {I}nternet Memes Analysis",
author = "Kumari, Gitanjali and
Das, Amitava and
Ekbal, Asif",
editor = "Bandyopadhyay, Sivaji and
Devi, Sobha Lalitha and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the 18th International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2021",
address = "National Institute of Technology Silchar, Silchar, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2021.icon-main.31",
pages = "261--270",
abstract = "Social media platforms like Facebook, Twitter, and Instagram have a significant impact on several aspects of society. Memes are a new type of social media communication found on social platforms. Even though memes are primarily used to distribute humorous content, certain memes propagate hate speech through dark humor. It is critical to properly analyze and filter out these toxic memes from social media. But the presence of sarcasm and humor in an implicit way analyzes memes more challenging. This paper proposes an end-to-end neural network architecture that learns the complex association between text and image of a meme. For this purpose, we use a recent SemEval-2020 Task-8 multimodal dataset. We proposed an end-to-end CNN-based deep neural network architecture with two sub-modules viz. (i)Co-attention based sub-module and (ii) Multimodal Factorized Bilinear Pooling(MFB) sub-module to represent the textual and visual features of a meme in a more fine-grained way. We demonstrated the effectiveness of our proposed work through extensive experiments. The experimental results show that our proposed model achieves a 36.81{\%} macro F1-score, outperforming all the baseline models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumari-etal-2021-co">
<titleInfo>
<title>Co-attention based Multimodal Factorized Bilinear Pooling for Internet Memes Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gitanjali</namePart>
<namePart type="family">Kumari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amitava</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sivaji</namePart>
<namePart type="family">Bandyopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="given">Lalitha</namePart>
<namePart type="family">Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">National Institute of Technology Silchar, Silchar, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media platforms like Facebook, Twitter, and Instagram have a significant impact on several aspects of society. Memes are a new type of social media communication found on social platforms. Even though memes are primarily used to distribute humorous content, certain memes propagate hate speech through dark humor. It is critical to properly analyze and filter out these toxic memes from social media. But the presence of sarcasm and humor in an implicit way analyzes memes more challenging. This paper proposes an end-to-end neural network architecture that learns the complex association between text and image of a meme. For this purpose, we use a recent SemEval-2020 Task-8 multimodal dataset. We proposed an end-to-end CNN-based deep neural network architecture with two sub-modules viz. (i)Co-attention based sub-module and (ii) Multimodal Factorized Bilinear Pooling(MFB) sub-module to represent the textual and visual features of a meme in a more fine-grained way. We demonstrated the effectiveness of our proposed work through extensive experiments. The experimental results show that our proposed model achieves a 36.81% macro F1-score, outperforming all the baseline models.</abstract>
<identifier type="citekey">kumari-etal-2021-co</identifier>
<location>
<url>https://aclanthology.org/2021.icon-main.31</url>
</location>
<part>
<date>2021-12</date>
<extent unit="page">
<start>261</start>
<end>270</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Co-attention based Multimodal Factorized Bilinear Pooling for Internet Memes Analysis
%A Kumari, Gitanjali
%A Das, Amitava
%A Ekbal, Asif
%Y Bandyopadhyay, Sivaji
%Y Devi, Sobha Lalitha
%Y Bhattacharyya, Pushpak
%S Proceedings of the 18th International Conference on Natural Language Processing (ICON)
%D 2021
%8 December
%I NLP Association of India (NLPAI)
%C National Institute of Technology Silchar, Silchar, India
%F kumari-etal-2021-co
%X Social media platforms like Facebook, Twitter, and Instagram have a significant impact on several aspects of society. Memes are a new type of social media communication found on social platforms. Even though memes are primarily used to distribute humorous content, certain memes propagate hate speech through dark humor. It is critical to properly analyze and filter out these toxic memes from social media. But the presence of sarcasm and humor in an implicit way analyzes memes more challenging. This paper proposes an end-to-end neural network architecture that learns the complex association between text and image of a meme. For this purpose, we use a recent SemEval-2020 Task-8 multimodal dataset. We proposed an end-to-end CNN-based deep neural network architecture with two sub-modules viz. (i)Co-attention based sub-module and (ii) Multimodal Factorized Bilinear Pooling(MFB) sub-module to represent the textual and visual features of a meme in a more fine-grained way. We demonstrated the effectiveness of our proposed work through extensive experiments. The experimental results show that our proposed model achieves a 36.81% macro F1-score, outperforming all the baseline models.
%U https://aclanthology.org/2021.icon-main.31
%P 261-270
Markdown (Informal)
[Co-attention based Multimodal Factorized Bilinear Pooling for Internet Memes Analysis](https://aclanthology.org/2021.icon-main.31) (Kumari et al., ICON 2021)
ACL