@inproceedings{zeng-etal-2021-affective,
title = "Affective Decoding for Empathetic Response Generation",
author = "Zeng, Chengkun and
Chen, Guanyi and
Lin, Chenghua and
Li, Ruizhe and
Chen, Zhi",
editor = "Belz, Anya and
Fan, Angela and
Reiter, Ehud and
Sripada, Yaji",
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
month = aug,
year = "2021",
address = "Aberdeen, Scotland, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.inlg-1.37/",
doi = "10.18653/v1/2021.inlg-1.37",
pages = "331--340",
abstract = "Understanding speaker`s feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zeng-etal-2021-affective">
<titleInfo>
<title>Affective Decoding for Empathetic Response Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengkun</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanyi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruizhe</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaji</namePart>
<namePart type="family">Sripada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Aberdeen, Scotland, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding speaker‘s feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.</abstract>
<identifier type="citekey">zeng-etal-2021-affective</identifier>
<identifier type="doi">10.18653/v1/2021.inlg-1.37</identifier>
<location>
<url>https://aclanthology.org/2021.inlg-1.37/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>331</start>
<end>340</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Affective Decoding for Empathetic Response Generation
%A Zeng, Chengkun
%A Chen, Guanyi
%A Lin, Chenghua
%A Li, Ruizhe
%A Chen, Zhi
%Y Belz, Anya
%Y Fan, Angela
%Y Reiter, Ehud
%Y Sripada, Yaji
%S Proceedings of the 14th International Conference on Natural Language Generation
%D 2021
%8 August
%I Association for Computational Linguistics
%C Aberdeen, Scotland, UK
%F zeng-etal-2021-affective
%X Understanding speaker‘s feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.
%R 10.18653/v1/2021.inlg-1.37
%U https://aclanthology.org/2021.inlg-1.37/
%U https://doi.org/10.18653/v1/2021.inlg-1.37
%P 331-340
Markdown (Informal)
[Affective Decoding for Empathetic Response Generation](https://aclanthology.org/2021.inlg-1.37/) (Zeng et al., INLG 2021)
ACL
- Chengkun Zeng, Guanyi Chen, Chenghua Lin, Ruizhe Li, and Zhi Chen. 2021. Affective Decoding for Empathetic Response Generation. In Proceedings of the 14th International Conference on Natural Language Generation, pages 331–340, Aberdeen, Scotland, UK. Association for Computational Linguistics.