@inproceedings{bhargava-penn-2021-proof,
title = "Proof Net Structure for Neural {L}ambek Categorial Parsing",
author = "Bhargava, Aditya and
Penn, Gerald",
editor = "Oepen, Stephan and
Sagae, Kenji and
Tsarfaty, Reut and
Bouma, Gosse and
Seddah, Djam{\'e} and
Zeman, Daniel",
booktitle = "Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.iwpt-1.2/",
doi = "10.18653/v1/2021.iwpt-1.2",
pages = "13--25",
abstract = "In this paper, we present the first statistical parser for Lambek categorial grammar (LCG), a grammatical formalism for which the graphical proof method known as *proof nets* is applicable. Our parser incorporates proof net structure and constraints into a system based on self-attention networks via novel model elements. Our experiments on an English LCG corpus show that incorporating term graph structure is helpful to the model, improving both parsing accuracy and coverage. Moreover, we derive novel loss functions by expressing proof net constraints as differentiable functions of our model output, enabling us to train our parser without ground-truth derivations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhargava-penn-2021-proof">
<titleInfo>
<title>Proof Net Structure for Neural Lambek Categorial Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Bhargava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerald</namePart>
<namePart type="family">Penn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenji</namePart>
<namePart type="family">Sagae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gosse</namePart>
<namePart type="family">Bouma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present the first statistical parser for Lambek categorial grammar (LCG), a grammatical formalism for which the graphical proof method known as *proof nets* is applicable. Our parser incorporates proof net structure and constraints into a system based on self-attention networks via novel model elements. Our experiments on an English LCG corpus show that incorporating term graph structure is helpful to the model, improving both parsing accuracy and coverage. Moreover, we derive novel loss functions by expressing proof net constraints as differentiable functions of our model output, enabling us to train our parser without ground-truth derivations.</abstract>
<identifier type="citekey">bhargava-penn-2021-proof</identifier>
<identifier type="doi">10.18653/v1/2021.iwpt-1.2</identifier>
<location>
<url>https://aclanthology.org/2021.iwpt-1.2/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>13</start>
<end>25</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Proof Net Structure for Neural Lambek Categorial Parsing
%A Bhargava, Aditya
%A Penn, Gerald
%Y Oepen, Stephan
%Y Sagae, Kenji
%Y Tsarfaty, Reut
%Y Bouma, Gosse
%Y Seddah, Djamé
%Y Zeman, Daniel
%S Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F bhargava-penn-2021-proof
%X In this paper, we present the first statistical parser for Lambek categorial grammar (LCG), a grammatical formalism for which the graphical proof method known as *proof nets* is applicable. Our parser incorporates proof net structure and constraints into a system based on self-attention networks via novel model elements. Our experiments on an English LCG corpus show that incorporating term graph structure is helpful to the model, improving both parsing accuracy and coverage. Moreover, we derive novel loss functions by expressing proof net constraints as differentiable functions of our model output, enabling us to train our parser without ground-truth derivations.
%R 10.18653/v1/2021.iwpt-1.2
%U https://aclanthology.org/2021.iwpt-1.2/
%U https://doi.org/10.18653/v1/2021.iwpt-1.2
%P 13-25
Markdown (Informal)
[Proof Net Structure for Neural Lambek Categorial Parsing](https://aclanthology.org/2021.iwpt-1.2/) (Bhargava & Penn, IWPT 2021)
ACL
- Aditya Bhargava and Gerald Penn. 2021. Proof Net Structure for Neural Lambek Categorial Parsing. In Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021), pages 13–25, Online. Association for Computational Linguistics.