@inproceedings{wang-etal-2021-subcategorizing,
title = "Subcategorizing Adverbials in {U}niversal {C}onceptual {C}ognitive {A}nnotation",
author = "Wang, Zhuxin and
Prange, Jakob and
Schneider, Nathan",
editor = "Bonial, Claire and
Xue, Nianwen",
booktitle = "Proceedings of the Joint 15th Linguistic Annotation Workshop (LAW) and 3rd Designing Meaning Representations (DMR) Workshop",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.law-1.10",
doi = "10.18653/v1/2021.law-1.10",
pages = "96--105",
abstract = "Universal Conceptual Cognitive Annotation (UCCA) is a semantic annotation scheme that organizes texts into coarse predicate-argument structure, offering broad coverage of semantic phenomena. At the same time, there is still need for a finer-grained treatment of many of the categories. The Adverbial category is of special interest, as it covers a wide range of fundamentally different meanings such as negation, causation, aspect, and event quantification. In this paper we introduce a refinement annotation scheme for UCCA{'}s Adverbial category, showing that UCCA Adverbials can indeed be subcategorized into at least 7 semantic types, and doing so can help clarify and disambiguate the otherwise coarse-grained labels. We provide a preliminary set of annotation guidelines, as well as pilot annotation experiments with high inter-annotator agreement, confirming the validity of the scheme.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2021-subcategorizing">
<titleInfo>
<title>Subcategorizing Adverbials in Universal Conceptual Cognitive Annotation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhuxin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakob</namePart>
<namePart type="family">Prange</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint 15th Linguistic Annotation Workshop (LAW) and 3rd Designing Meaning Representations (DMR) Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Bonial</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Universal Conceptual Cognitive Annotation (UCCA) is a semantic annotation scheme that organizes texts into coarse predicate-argument structure, offering broad coverage of semantic phenomena. At the same time, there is still need for a finer-grained treatment of many of the categories. The Adverbial category is of special interest, as it covers a wide range of fundamentally different meanings such as negation, causation, aspect, and event quantification. In this paper we introduce a refinement annotation scheme for UCCA’s Adverbial category, showing that UCCA Adverbials can indeed be subcategorized into at least 7 semantic types, and doing so can help clarify and disambiguate the otherwise coarse-grained labels. We provide a preliminary set of annotation guidelines, as well as pilot annotation experiments with high inter-annotator agreement, confirming the validity of the scheme.</abstract>
<identifier type="citekey">wang-etal-2021-subcategorizing</identifier>
<identifier type="doi">10.18653/v1/2021.law-1.10</identifier>
<location>
<url>https://aclanthology.org/2021.law-1.10</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>96</start>
<end>105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Subcategorizing Adverbials in Universal Conceptual Cognitive Annotation
%A Wang, Zhuxin
%A Prange, Jakob
%A Schneider, Nathan
%Y Bonial, Claire
%Y Xue, Nianwen
%S Proceedings of the Joint 15th Linguistic Annotation Workshop (LAW) and 3rd Designing Meaning Representations (DMR) Workshop
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F wang-etal-2021-subcategorizing
%X Universal Conceptual Cognitive Annotation (UCCA) is a semantic annotation scheme that organizes texts into coarse predicate-argument structure, offering broad coverage of semantic phenomena. At the same time, there is still need for a finer-grained treatment of many of the categories. The Adverbial category is of special interest, as it covers a wide range of fundamentally different meanings such as negation, causation, aspect, and event quantification. In this paper we introduce a refinement annotation scheme for UCCA’s Adverbial category, showing that UCCA Adverbials can indeed be subcategorized into at least 7 semantic types, and doing so can help clarify and disambiguate the otherwise coarse-grained labels. We provide a preliminary set of annotation guidelines, as well as pilot annotation experiments with high inter-annotator agreement, confirming the validity of the scheme.
%R 10.18653/v1/2021.law-1.10
%U https://aclanthology.org/2021.law-1.10
%U https://doi.org/10.18653/v1/2021.law-1.10
%P 96-105
Markdown (Informal)
[Subcategorizing Adverbials in Universal Conceptual Cognitive Annotation](https://aclanthology.org/2021.law-1.10) (Wang et al., LAW 2021)
ACL