@inproceedings{dowlagar-mamidi-2021-edione,
title = "{EDIO}ne@{LT}-{EDI}-{EACL}2021: Pre-trained Transformers with Convolutional Neural Networks for Hope Speech Detection.",
author = "Dowlagar, Suman and
Mamidi, Radhika",
editor = "Chakravarthi, Bharathi Raja and
McCrae, John P. and
Zarrouk, Manel and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion",
month = apr,
year = "2021",
address = "Kyiv",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.ltedi-1.11/",
pages = "86--91",
abstract = "Hope is an essential aspect of mental health stability and recovery in every individual in this fast-changing world. Any tools and methods developed for detection, analysis, and generation of hope speech will be beneficial. In this paper, we propose a model on hope-speech detection to automatically detect web content that may play a positive role in diffusing hostility on social media. We perform the experiments by taking advantage of pre-processing and transfer-learning models. We observed that the pre-trained multilingual-BERT model with convolution neural networks gave the best results. Our model ranked first, third, and fourth ranks on English, Malayalam-English, and Tamil-English code-mixed datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dowlagar-mamidi-2021-edione">
<titleInfo>
<title>EDIOne@LT-EDI-EACL2021: Pre-trained Transformers with Convolutional Neural Networks for Hope Speech Detection.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suman</namePart>
<namePart type="family">Dowlagar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radhika</namePart>
<namePart type="family">Mamidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Zarrouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kyiv</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hope is an essential aspect of mental health stability and recovery in every individual in this fast-changing world. Any tools and methods developed for detection, analysis, and generation of hope speech will be beneficial. In this paper, we propose a model on hope-speech detection to automatically detect web content that may play a positive role in diffusing hostility on social media. We perform the experiments by taking advantage of pre-processing and transfer-learning models. We observed that the pre-trained multilingual-BERT model with convolution neural networks gave the best results. Our model ranked first, third, and fourth ranks on English, Malayalam-English, and Tamil-English code-mixed datasets.</abstract>
<identifier type="citekey">dowlagar-mamidi-2021-edione</identifier>
<location>
<url>https://aclanthology.org/2021.ltedi-1.11/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>86</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EDIOne@LT-EDI-EACL2021: Pre-trained Transformers with Convolutional Neural Networks for Hope Speech Detection.
%A Dowlagar, Suman
%A Mamidi, Radhika
%Y Chakravarthi, Bharathi Raja
%Y McCrae, John P.
%Y Zarrouk, Manel
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kyiv
%F dowlagar-mamidi-2021-edione
%X Hope is an essential aspect of mental health stability and recovery in every individual in this fast-changing world. Any tools and methods developed for detection, analysis, and generation of hope speech will be beneficial. In this paper, we propose a model on hope-speech detection to automatically detect web content that may play a positive role in diffusing hostility on social media. We perform the experiments by taking advantage of pre-processing and transfer-learning models. We observed that the pre-trained multilingual-BERT model with convolution neural networks gave the best results. Our model ranked first, third, and fourth ranks on English, Malayalam-English, and Tamil-English code-mixed datasets.
%U https://aclanthology.org/2021.ltedi-1.11/
%P 86-91
Markdown (Informal)
[EDIOne@LT-EDI-EACL2021: Pre-trained Transformers with Convolutional Neural Networks for Hope Speech Detection.](https://aclanthology.org/2021.ltedi-1.11/) (Dowlagar & Mamidi, LTEDI 2021)
ACL