@inproceedings{jegadeesan-etal-2021-improving,
title = "Improving the Diversity of Unsupervised Paraphrasing with Embedding Outputs",
author = "Jegadeesan, Monisha and
Kumar, Sachin and
Wieting, John and
Tsvetkov, Yulia",
editor = "Ataman, Duygu and
Birch, Alexandra and
Conneau, Alexis and
Firat, Orhan and
Ruder, Sebastian and
Sahin, Gozde Gul",
booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.mrl-1.15/",
doi = "10.18653/v1/2021.mrl-1.15",
pages = "166--175",
abstract = "We present a novel technique for zero-shot paraphrase generation. The key contribution is an end-to-end multilingual paraphrasing model that is trained using translated parallel corpora to generate paraphrases into {\textquotedblleft}meaning spaces{\textquotedblright} {--} replacing the final softmax layer with word embeddings. This architectural modification, plus a training procedure that incorporates an autoencoding objective, enables effective parameter sharing across languages for more fluent monolingual rewriting, and facilitates fluency and diversity in the generated outputs. Our continuous-output paraphrase generation models outperform zero-shot paraphrasing baselines when evaluated on two languages using a battery of computational metrics as well as in human assessment."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jegadeesan-etal-2021-improving">
<titleInfo>
<title>Improving the Diversity of Unsupervised Paraphrasing with Embedding Outputs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Monisha</namePart>
<namePart type="family">Jegadeesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sachin</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Wieting</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Multilingual Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Duygu</namePart>
<namePart type="family">Ataman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Conneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orhan</namePart>
<namePart type="family">Firat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gozde</namePart>
<namePart type="given">Gul</namePart>
<namePart type="family">Sahin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel technique for zero-shot paraphrase generation. The key contribution is an end-to-end multilingual paraphrasing model that is trained using translated parallel corpora to generate paraphrases into “meaning spaces” – replacing the final softmax layer with word embeddings. This architectural modification, plus a training procedure that incorporates an autoencoding objective, enables effective parameter sharing across languages for more fluent monolingual rewriting, and facilitates fluency and diversity in the generated outputs. Our continuous-output paraphrase generation models outperform zero-shot paraphrasing baselines when evaluated on two languages using a battery of computational metrics as well as in human assessment.</abstract>
<identifier type="citekey">jegadeesan-etal-2021-improving</identifier>
<identifier type="doi">10.18653/v1/2021.mrl-1.15</identifier>
<location>
<url>https://aclanthology.org/2021.mrl-1.15/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>166</start>
<end>175</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving the Diversity of Unsupervised Paraphrasing with Embedding Outputs
%A Jegadeesan, Monisha
%A Kumar, Sachin
%A Wieting, John
%A Tsvetkov, Yulia
%Y Ataman, Duygu
%Y Birch, Alexandra
%Y Conneau, Alexis
%Y Firat, Orhan
%Y Ruder, Sebastian
%Y Sahin, Gozde Gul
%S Proceedings of the 1st Workshop on Multilingual Representation Learning
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F jegadeesan-etal-2021-improving
%X We present a novel technique for zero-shot paraphrase generation. The key contribution is an end-to-end multilingual paraphrasing model that is trained using translated parallel corpora to generate paraphrases into “meaning spaces” – replacing the final softmax layer with word embeddings. This architectural modification, plus a training procedure that incorporates an autoencoding objective, enables effective parameter sharing across languages for more fluent monolingual rewriting, and facilitates fluency and diversity in the generated outputs. Our continuous-output paraphrase generation models outperform zero-shot paraphrasing baselines when evaluated on two languages using a battery of computational metrics as well as in human assessment.
%R 10.18653/v1/2021.mrl-1.15
%U https://aclanthology.org/2021.mrl-1.15/
%U https://doi.org/10.18653/v1/2021.mrl-1.15
%P 166-175
Markdown (Informal)
[Improving the Diversity of Unsupervised Paraphrasing with Embedding Outputs](https://aclanthology.org/2021.mrl-1.15/) (Jegadeesan et al., MRL 2021)
ACL