@inproceedings{chau-smith-2021-specializing,
title = "Specializing Multilingual Language Models: An Empirical Study",
author = "Chau, Ethan C. and
Smith, Noah A.",
editor = "Ataman, Duygu and
Birch, Alexandra and
Conneau, Alexis and
Firat, Orhan and
Ruder, Sebastian and
Sahin, Gozde Gul",
booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.mrl-1.5",
doi = "10.18653/v1/2021.mrl-1.5",
pages = "51--61",
abstract = "Pretrained multilingual language models have become a common tool in transferring NLP capabilities to low-resource languages, often with adaptations. In this work, we study the performance, extensibility, and interaction of two such adaptations: vocabulary augmentation and script transliteration. Our evaluations on part-of-speech tagging, universal dependency parsing, and named entity recognition in nine diverse low-resource languages uphold the viability of these approaches while raising new questions around how to optimally adapt multilingual models to low-resource settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chau-smith-2021-specializing">
<titleInfo>
<title>Specializing Multilingual Language Models: An Empirical Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ethan</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Chau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Multilingual Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Duygu</namePart>
<namePart type="family">Ataman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Conneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orhan</namePart>
<namePart type="family">Firat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gozde</namePart>
<namePart type="given">Gul</namePart>
<namePart type="family">Sahin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pretrained multilingual language models have become a common tool in transferring NLP capabilities to low-resource languages, often with adaptations. In this work, we study the performance, extensibility, and interaction of two such adaptations: vocabulary augmentation and script transliteration. Our evaluations on part-of-speech tagging, universal dependency parsing, and named entity recognition in nine diverse low-resource languages uphold the viability of these approaches while raising new questions around how to optimally adapt multilingual models to low-resource settings.</abstract>
<identifier type="citekey">chau-smith-2021-specializing</identifier>
<identifier type="doi">10.18653/v1/2021.mrl-1.5</identifier>
<location>
<url>https://aclanthology.org/2021.mrl-1.5</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>51</start>
<end>61</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Specializing Multilingual Language Models: An Empirical Study
%A Chau, Ethan C.
%A Smith, Noah A.
%Y Ataman, Duygu
%Y Birch, Alexandra
%Y Conneau, Alexis
%Y Firat, Orhan
%Y Ruder, Sebastian
%Y Sahin, Gozde Gul
%S Proceedings of the 1st Workshop on Multilingual Representation Learning
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F chau-smith-2021-specializing
%X Pretrained multilingual language models have become a common tool in transferring NLP capabilities to low-resource languages, often with adaptations. In this work, we study the performance, extensibility, and interaction of two such adaptations: vocabulary augmentation and script transliteration. Our evaluations on part-of-speech tagging, universal dependency parsing, and named entity recognition in nine diverse low-resource languages uphold the viability of these approaches while raising new questions around how to optimally adapt multilingual models to low-resource settings.
%R 10.18653/v1/2021.mrl-1.5
%U https://aclanthology.org/2021.mrl-1.5
%U https://doi.org/10.18653/v1/2021.mrl-1.5
%P 51-61
Markdown (Informal)
[Specializing Multilingual Language Models: An Empirical Study](https://aclanthology.org/2021.mrl-1.5) (Chau & Smith, MRL 2021)
ACL