@inproceedings{nguyen-nguyen-2021-phonlp,
title = "{P}ho{NLP}: A joint multi-task learning model for {V}ietnamese part-of-speech tagging, named entity recognition and dependency parsing",
author = "Nguyen, Linh The and
Nguyen, Dat Quoc",
editor = "Sil, Avi and
Lin, Xi Victoria",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-demos.1/",
doi = "10.18653/v1/2021.naacl-demos.1",
pages = "1--7",
abstract = "We present the first multi-task learning model {--} named PhoNLP {--} for joint Vietnamese part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT (Nguyen and Nguyen, 2020) for each task independently. We publicly release PhoNLP as an open-source toolkit under the Apache License 2.0. Although we specify PhoNLP for Vietnamese, our PhoNLP training and evaluation command scripts in fact can directly work for other languages that have a pre-trained BERT-based language model and gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing. We hope that PhoNLP can serve as a strong baseline and useful toolkit for future NLP research and applications to not only Vietnamese but also the other languages. Our PhoNLP is available at \url{https://github.com/VinAIResearch/PhoNLP}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-nguyen-2021-phonlp">
<titleInfo>
<title>PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linh</namePart>
<namePart type="given">The</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dat</namePart>
<namePart type="given">Quoc</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Sil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="given">Victoria</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the first multi-task learning model – named PhoNLP – for joint Vietnamese part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT (Nguyen and Nguyen, 2020) for each task independently. We publicly release PhoNLP as an open-source toolkit under the Apache License 2.0. Although we specify PhoNLP for Vietnamese, our PhoNLP training and evaluation command scripts in fact can directly work for other languages that have a pre-trained BERT-based language model and gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing. We hope that PhoNLP can serve as a strong baseline and useful toolkit for future NLP research and applications to not only Vietnamese but also the other languages. Our PhoNLP is available at https://github.com/VinAIResearch/PhoNLP</abstract>
<identifier type="citekey">nguyen-nguyen-2021-phonlp</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-demos.1</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-demos.1/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing
%A Nguyen, Linh The
%A Nguyen, Dat Quoc
%Y Sil, Avi
%Y Lin, Xi Victoria
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F nguyen-nguyen-2021-phonlp
%X We present the first multi-task learning model – named PhoNLP – for joint Vietnamese part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT (Nguyen and Nguyen, 2020) for each task independently. We publicly release PhoNLP as an open-source toolkit under the Apache License 2.0. Although we specify PhoNLP for Vietnamese, our PhoNLP training and evaluation command scripts in fact can directly work for other languages that have a pre-trained BERT-based language model and gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing. We hope that PhoNLP can serve as a strong baseline and useful toolkit for future NLP research and applications to not only Vietnamese but also the other languages. Our PhoNLP is available at https://github.com/VinAIResearch/PhoNLP
%R 10.18653/v1/2021.naacl-demos.1
%U https://aclanthology.org/2021.naacl-demos.1/
%U https://doi.org/10.18653/v1/2021.naacl-demos.1
%P 1-7
Markdown (Informal)
[PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing](https://aclanthology.org/2021.naacl-demos.1/) (Nguyen & Nguyen, NAACL 2021)
ACL