@inproceedings{porada-etal-2021-modeling,
title = "Modeling Event Plausibility with Consistent Conceptual Abstraction",
author = "Porada, Ian and
Suleman, Kaheer and
Trischler, Adam and
Cheung, Jackie Chi Kit",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.138/",
doi = "10.18653/v1/2021.naacl-main.138",
pages = "1732--1743",
abstract = "Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models{---}most recently pre-trained, Transformer language models{---}have demonstrated improvements in modeling event plausibility, their performance still falls short of humans'. In this work, we show that Transformer-based plausibility models are markedly inconsistent across the conceptual classes of a lexical hierarchy, inferring that {\textquotedblleft}a person breathing{\textquotedblright} is plausible while {\textquotedblleft}a dentist breathing{\textquotedblright} is not, for example. We find this inconsistency persists even when models are softly injected with lexical knowledge, and we present a simple post-hoc method of forcing model consistency that improves correlation with human plausibility judgements."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="porada-etal-2021-modeling">
<titleInfo>
<title>Modeling Event Plausibility with Consistent Conceptual Abstraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ian</namePart>
<namePart type="family">Porada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaheer</namePart>
<namePart type="family">Suleman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Trischler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models—most recently pre-trained, Transformer language models—have demonstrated improvements in modeling event plausibility, their performance still falls short of humans’. In this work, we show that Transformer-based plausibility models are markedly inconsistent across the conceptual classes of a lexical hierarchy, inferring that “a person breathing” is plausible while “a dentist breathing” is not, for example. We find this inconsistency persists even when models are softly injected with lexical knowledge, and we present a simple post-hoc method of forcing model consistency that improves correlation with human plausibility judgements.</abstract>
<identifier type="citekey">porada-etal-2021-modeling</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.138</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.138/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>1732</start>
<end>1743</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Event Plausibility with Consistent Conceptual Abstraction
%A Porada, Ian
%A Suleman, Kaheer
%A Trischler, Adam
%A Cheung, Jackie Chi Kit
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F porada-etal-2021-modeling
%X Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models—most recently pre-trained, Transformer language models—have demonstrated improvements in modeling event plausibility, their performance still falls short of humans’. In this work, we show that Transformer-based plausibility models are markedly inconsistent across the conceptual classes of a lexical hierarchy, inferring that “a person breathing” is plausible while “a dentist breathing” is not, for example. We find this inconsistency persists even when models are softly injected with lexical knowledge, and we present a simple post-hoc method of forcing model consistency that improves correlation with human plausibility judgements.
%R 10.18653/v1/2021.naacl-main.138
%U https://aclanthology.org/2021.naacl-main.138/
%U https://doi.org/10.18653/v1/2021.naacl-main.138
%P 1732-1743
Markdown (Informal)
[Modeling Event Plausibility with Consistent Conceptual Abstraction](https://aclanthology.org/2021.naacl-main.138/) (Porada et al., NAACL 2021)
ACL
- Ian Porada, Kaheer Suleman, Adam Trischler, and Jackie Chi Kit Cheung. 2021. Modeling Event Plausibility with Consistent Conceptual Abstraction. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1732–1743, Online. Association for Computational Linguistics.