@inproceedings{yao-etal-2021-muser,
title = "{MUSER}: {MU}ltimodal Stress detection using Emotion Recognition as an Auxiliary Task",
author = "Yao, Yiqun and
Papakostas, Michalis and
Burzo, Mihai and
Abouelenien, Mohamed and
Mihalcea, Rada",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.216/",
doi = "10.18653/v1/2021.naacl-main.216",
pages = "2714--2725",
abstract = "The capability to automatically detect human stress can benefit artificial intelligent agents involved in affective computing and human-computer interaction. Stress and emotion are both human affective states, and stress has proven to have important implications on the regulation and expression of emotion. Although a series of methods have been established for multimodal stress detection, limited steps have been taken to explore the underlying inter-dependence between stress and emotion. In this work, we investigate the value of emotion recognition as an auxiliary task to improve stress detection. We propose MUSER {--} a transformer-based model architecture and a novel multi-task learning algorithm with speed-based dynamic sampling strategy. Evaluation on the Multimodal Stressed Emotion (MuSE) dataset shows that our model is effective for stress detection with both internal and external auxiliary tasks, and achieves state-of-the-art results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yao-etal-2021-muser">
<titleInfo>
<title>MUSER: MUltimodal Stress detection using Emotion Recognition as an Auxiliary Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiqun</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Papakostas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Burzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Abouelenien</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The capability to automatically detect human stress can benefit artificial intelligent agents involved in affective computing and human-computer interaction. Stress and emotion are both human affective states, and stress has proven to have important implications on the regulation and expression of emotion. Although a series of methods have been established for multimodal stress detection, limited steps have been taken to explore the underlying inter-dependence between stress and emotion. In this work, we investigate the value of emotion recognition as an auxiliary task to improve stress detection. We propose MUSER – a transformer-based model architecture and a novel multi-task learning algorithm with speed-based dynamic sampling strategy. Evaluation on the Multimodal Stressed Emotion (MuSE) dataset shows that our model is effective for stress detection with both internal and external auxiliary tasks, and achieves state-of-the-art results.</abstract>
<identifier type="citekey">yao-etal-2021-muser</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.216</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.216/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>2714</start>
<end>2725</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MUSER: MUltimodal Stress detection using Emotion Recognition as an Auxiliary Task
%A Yao, Yiqun
%A Papakostas, Michalis
%A Burzo, Mihai
%A Abouelenien, Mohamed
%A Mihalcea, Rada
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F yao-etal-2021-muser
%X The capability to automatically detect human stress can benefit artificial intelligent agents involved in affective computing and human-computer interaction. Stress and emotion are both human affective states, and stress has proven to have important implications on the regulation and expression of emotion. Although a series of methods have been established for multimodal stress detection, limited steps have been taken to explore the underlying inter-dependence between stress and emotion. In this work, we investigate the value of emotion recognition as an auxiliary task to improve stress detection. We propose MUSER – a transformer-based model architecture and a novel multi-task learning algorithm with speed-based dynamic sampling strategy. Evaluation on the Multimodal Stressed Emotion (MuSE) dataset shows that our model is effective for stress detection with both internal and external auxiliary tasks, and achieves state-of-the-art results.
%R 10.18653/v1/2021.naacl-main.216
%U https://aclanthology.org/2021.naacl-main.216/
%U https://doi.org/10.18653/v1/2021.naacl-main.216
%P 2714-2725
Markdown (Informal)
[MUSER: MUltimodal Stress detection using Emotion Recognition as an Auxiliary Task](https://aclanthology.org/2021.naacl-main.216/) (Yao et al., NAACL 2021)
ACL