@inproceedings{meng-etal-2021-empirical,
title = "An Empirical Study on Neural Keyphrase Generation",
author = "Meng, Rui and
Yuan, Xingdi and
Wang, Tong and
Zhao, Sanqiang and
Trischler, Adam and
He, Daqing",
editor = "Toutanova, Kristina and
Rumshisky, Anna and
Zettlemoyer, Luke and
Hakkani-Tur, Dilek and
Beltagy, Iz and
Bethard, Steven and
Cotterell, Ryan and
Chakraborty, Tanmoy and
Zhou, Yichao",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.396",
doi = "10.18653/v1/2021.naacl-main.396",
pages = "4985--5007",
abstract = "Recent years have seen a flourishing of neural keyphrase generation (KPG) works, including the release of several large-scale datasets and a host of new models to tackle them. Model performance on KPG tasks has increased significantly with evolving deep learning research. However, there lacks a comprehensive comparison among different model designs, and a thorough investigation on related factors that may affect a KPG system{'}s generalization performance. In this empirical study, we aim to fill this gap by providing extensive experimental results and analyzing the most crucial factors impacting the generalizability of KPG models. We hope this study can help clarify some of the uncertainties surrounding the KPG task and facilitate future research on this topic.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meng-etal-2021-empirical">
<titleInfo>
<title>An Empirical Study on Neural Keyphrase Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingdi</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanqiang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Trischler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daqing</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent years have seen a flourishing of neural keyphrase generation (KPG) works, including the release of several large-scale datasets and a host of new models to tackle them. Model performance on KPG tasks has increased significantly with evolving deep learning research. However, there lacks a comprehensive comparison among different model designs, and a thorough investigation on related factors that may affect a KPG system’s generalization performance. In this empirical study, we aim to fill this gap by providing extensive experimental results and analyzing the most crucial factors impacting the generalizability of KPG models. We hope this study can help clarify some of the uncertainties surrounding the KPG task and facilitate future research on this topic.</abstract>
<identifier type="citekey">meng-etal-2021-empirical</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-main.396</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-main.396</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>4985</start>
<end>5007</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Empirical Study on Neural Keyphrase Generation
%A Meng, Rui
%A Yuan, Xingdi
%A Wang, Tong
%A Zhao, Sanqiang
%A Trischler, Adam
%A He, Daqing
%Y Toutanova, Kristina
%Y Rumshisky, Anna
%Y Zettlemoyer, Luke
%Y Hakkani-Tur, Dilek
%Y Beltagy, Iz
%Y Bethard, Steven
%Y Cotterell, Ryan
%Y Chakraborty, Tanmoy
%Y Zhou, Yichao
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F meng-etal-2021-empirical
%X Recent years have seen a flourishing of neural keyphrase generation (KPG) works, including the release of several large-scale datasets and a host of new models to tackle them. Model performance on KPG tasks has increased significantly with evolving deep learning research. However, there lacks a comprehensive comparison among different model designs, and a thorough investigation on related factors that may affect a KPG system’s generalization performance. In this empirical study, we aim to fill this gap by providing extensive experimental results and analyzing the most crucial factors impacting the generalizability of KPG models. We hope this study can help clarify some of the uncertainties surrounding the KPG task and facilitate future research on this topic.
%R 10.18653/v1/2021.naacl-main.396
%U https://aclanthology.org/2021.naacl-main.396
%U https://doi.org/10.18653/v1/2021.naacl-main.396
%P 4985-5007
Markdown (Informal)
[An Empirical Study on Neural Keyphrase Generation](https://aclanthology.org/2021.naacl-main.396) (Meng et al., NAACL 2021)
ACL
- Rui Meng, Xingdi Yuan, Tong Wang, Sanqiang Zhao, Adam Trischler, and Daqing He. 2021. An Empirical Study on Neural Keyphrase Generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4985–5007, Online. Association for Computational Linguistics.