@inproceedings{hatzel-biemann-2021-towards,
title = "Towards Layered Events and Schema Representations in Long Documents",
author = "Hatzel, Hans Ole and
Biemann, Chris",
editor = "Durmus, Esin and
Gupta, Vivek and
Liu, Nelson and
Peng, Nanyun and
Su, Yu",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-srw.5",
doi = "10.18653/v1/2021.naacl-srw.5",
pages = "32--39",
abstract = "In this thesis proposal, we explore the application of event extraction to literary texts. Considering the lengths of literary documents modeling events in different granularities may be more adequate to extract meaningful information, as individual elements contribute little to the overall semantics. We adapt the concept of schemas as sequences of events all describing a single process, connected through shared participants extending it to for multiple schemas in a document. Segmentation of event sequences into schemas is approached by modeling event sequences, on such task as the narrative cloze task, the prediction of missing events in sequences. We propose building on sequences of event embeddings to form schema embeddings, thereby summarizing sections of documents using a single representation. This approach will allow for the comparisons of different sections of documents and entire literary works. Literature is a challenging domain based on its variety of genres, yet the representation of literary content has received relatively little attention.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hatzel-biemann-2021-towards">
<titleInfo>
<title>Towards Layered Events and Schema Representations in Long Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hans</namePart>
<namePart type="given">Ole</namePart>
<namePart type="family">Hatzel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Biemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Esin</namePart>
<namePart type="family">Durmus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nelson</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nanyun</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this thesis proposal, we explore the application of event extraction to literary texts. Considering the lengths of literary documents modeling events in different granularities may be more adequate to extract meaningful information, as individual elements contribute little to the overall semantics. We adapt the concept of schemas as sequences of events all describing a single process, connected through shared participants extending it to for multiple schemas in a document. Segmentation of event sequences into schemas is approached by modeling event sequences, on such task as the narrative cloze task, the prediction of missing events in sequences. We propose building on sequences of event embeddings to form schema embeddings, thereby summarizing sections of documents using a single representation. This approach will allow for the comparisons of different sections of documents and entire literary works. Literature is a challenging domain based on its variety of genres, yet the representation of literary content has received relatively little attention.</abstract>
<identifier type="citekey">hatzel-biemann-2021-towards</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-srw.5</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-srw.5</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>32</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Layered Events and Schema Representations in Long Documents
%A Hatzel, Hans Ole
%A Biemann, Chris
%Y Durmus, Esin
%Y Gupta, Vivek
%Y Liu, Nelson
%Y Peng, Nanyun
%Y Su, Yu
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F hatzel-biemann-2021-towards
%X In this thesis proposal, we explore the application of event extraction to literary texts. Considering the lengths of literary documents modeling events in different granularities may be more adequate to extract meaningful information, as individual elements contribute little to the overall semantics. We adapt the concept of schemas as sequences of events all describing a single process, connected through shared participants extending it to for multiple schemas in a document. Segmentation of event sequences into schemas is approached by modeling event sequences, on such task as the narrative cloze task, the prediction of missing events in sequences. We propose building on sequences of event embeddings to form schema embeddings, thereby summarizing sections of documents using a single representation. This approach will allow for the comparisons of different sections of documents and entire literary works. Literature is a challenging domain based on its variety of genres, yet the representation of literary content has received relatively little attention.
%R 10.18653/v1/2021.naacl-srw.5
%U https://aclanthology.org/2021.naacl-srw.5
%U https://doi.org/10.18653/v1/2021.naacl-srw.5
%P 32-39
Markdown (Informal)
[Towards Layered Events and Schema Representations in Long Documents](https://aclanthology.org/2021.naacl-srw.5) (Hatzel & Biemann, NAACL 2021)
ACL