@inproceedings{beltagy-etal-2021-beyond,
title = "Beyond Paragraphs: {NLP} for Long Sequences",
author = "Beltagy, Iz and
Cohan, Arman and
Hajishirzi, Hannaneh and
Min, Sewon and
Peters, Matthew E.",
editor = "Kondrak, Greg and
Bontcheva, Kalina and
Gillick, Dan",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-tutorials.5/",
doi = "10.18653/v1/2021.naacl-tutorials.5",
pages = "20--24",
abstract = "In this tutorial, we aim at bringing interested NLP researchers up to speed about the recent and ongoing techniques for document-level representation learning. Additionally, our goal is to reveal new research opportunities to the audience, which will hopefully bring us closer to address existing challenges in this domain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beltagy-etal-2021-beyond">
<titleInfo>
<title>Beyond Paragraphs: NLP for Long Sequences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iz</namePart>
<namePart type="family">Beltagy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arman</namePart>
<namePart type="family">Cohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannaneh</namePart>
<namePart type="family">Hajishirzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sewon</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Peters</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalina</namePart>
<namePart type="family">Bontcheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Gillick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this tutorial, we aim at bringing interested NLP researchers up to speed about the recent and ongoing techniques for document-level representation learning. Additionally, our goal is to reveal new research opportunities to the audience, which will hopefully bring us closer to address existing challenges in this domain.</abstract>
<identifier type="citekey">beltagy-etal-2021-beyond</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-tutorials.5</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-tutorials.5/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>20</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Paragraphs: NLP for Long Sequences
%A Beltagy, Iz
%A Cohan, Arman
%A Hajishirzi, Hannaneh
%A Min, Sewon
%A Peters, Matthew E.
%Y Kondrak, Greg
%Y Bontcheva, Kalina
%Y Gillick, Dan
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F beltagy-etal-2021-beyond
%X In this tutorial, we aim at bringing interested NLP researchers up to speed about the recent and ongoing techniques for document-level representation learning. Additionally, our goal is to reveal new research opportunities to the audience, which will hopefully bring us closer to address existing challenges in this domain.
%R 10.18653/v1/2021.naacl-tutorials.5
%U https://aclanthology.org/2021.naacl-tutorials.5/
%U https://doi.org/10.18653/v1/2021.naacl-tutorials.5
%P 20-24
Markdown (Informal)
[Beyond Paragraphs: NLP for Long Sequences](https://aclanthology.org/2021.naacl-tutorials.5/) (Beltagy et al., NAACL 2021)
ACL
- Iz Beltagy, Arman Cohan, Hannaneh Hajishirzi, Sewon Min, and Matthew E. Peters. 2021. Beyond Paragraphs: NLP for Long Sequences. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials, pages 20–24, Online. Association for Computational Linguistics.