@inproceedings{beckage-etal-2021-context,
title = "Context or No Context? A preliminary exploration of human-in-the-loop approach for Incremental Temporal Summarization in meetings",
author = "Beckage, Nicole and
H Kumar, Shachi and
Sahay, Saurav and
Manuvinakurike, Ramesh",
editor = "Carenini, Giuseppe and
Cheung, Jackie Chi Kit and
Dong, Yue and
Liu, Fei and
Wang, Lu",
booktitle = "Proceedings of the Third Workshop on New Frontiers in Summarization",
month = nov,
year = "2021",
address = "Online and in Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.newsum-1.11",
doi = "10.18653/v1/2021.newsum-1.11",
pages = "96--106",
abstract = "Incremental meeting temporal summarization, summarizing relevant information of partial multi-party meeting dialogue, is emerging as the next challenge in summarization research. Here we examine the extent to which human abstractive summaries of the preceding increments (context) can be combined with extractive meeting dialogue to generate abstractive summaries. We find that previous context improves ROUGE scores. Our findings further suggest that contexts begin to outweigh the dialogue. Using keyphrase extraction and semantic role labeling (SRL), we find that SRL captures relevant information without overwhelming the the model architecture. By compressing the previous contexts by {\textasciitilde}70{\%}, we achieve better ROUGE scores over our baseline models. Collectively, these results suggest that context matters, as does the way in which context is presented to the model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beckage-etal-2021-context">
<titleInfo>
<title>Context or No Context? A preliminary exploration of human-in-the-loop approach for Incremental Temporal Summarization in meetings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicole</namePart>
<namePart type="family">Beckage</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shachi</namePart>
<namePart type="family">H Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saurav</namePart>
<namePart type="family">Sahay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramesh</namePart>
<namePart type="family">Manuvinakurike</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on New Frontiers in Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and in Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Incremental meeting temporal summarization, summarizing relevant information of partial multi-party meeting dialogue, is emerging as the next challenge in summarization research. Here we examine the extent to which human abstractive summaries of the preceding increments (context) can be combined with extractive meeting dialogue to generate abstractive summaries. We find that previous context improves ROUGE scores. Our findings further suggest that contexts begin to outweigh the dialogue. Using keyphrase extraction and semantic role labeling (SRL), we find that SRL captures relevant information without overwhelming the the model architecture. By compressing the previous contexts by ~70%, we achieve better ROUGE scores over our baseline models. Collectively, these results suggest that context matters, as does the way in which context is presented to the model.</abstract>
<identifier type="citekey">beckage-etal-2021-context</identifier>
<identifier type="doi">10.18653/v1/2021.newsum-1.11</identifier>
<location>
<url>https://aclanthology.org/2021.newsum-1.11</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>96</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context or No Context? A preliminary exploration of human-in-the-loop approach for Incremental Temporal Summarization in meetings
%A Beckage, Nicole
%A H Kumar, Shachi
%A Sahay, Saurav
%A Manuvinakurike, Ramesh
%Y Carenini, Giuseppe
%Y Cheung, Jackie Chi Kit
%Y Dong, Yue
%Y Liu, Fei
%Y Wang, Lu
%S Proceedings of the Third Workshop on New Frontiers in Summarization
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and in Dominican Republic
%F beckage-etal-2021-context
%X Incremental meeting temporal summarization, summarizing relevant information of partial multi-party meeting dialogue, is emerging as the next challenge in summarization research. Here we examine the extent to which human abstractive summaries of the preceding increments (context) can be combined with extractive meeting dialogue to generate abstractive summaries. We find that previous context improves ROUGE scores. Our findings further suggest that contexts begin to outweigh the dialogue. Using keyphrase extraction and semantic role labeling (SRL), we find that SRL captures relevant information without overwhelming the the model architecture. By compressing the previous contexts by ~70%, we achieve better ROUGE scores over our baseline models. Collectively, these results suggest that context matters, as does the way in which context is presented to the model.
%R 10.18653/v1/2021.newsum-1.11
%U https://aclanthology.org/2021.newsum-1.11
%U https://doi.org/10.18653/v1/2021.newsum-1.11
%P 96-106
Markdown (Informal)
[Context or No Context? A preliminary exploration of human-in-the-loop approach for Incremental Temporal Summarization in meetings](https://aclanthology.org/2021.newsum-1.11) (Beckage et al., NewSum 2021)
ACL