@inproceedings{suhane-kowshik-2021-multi,
title = "Multi Output Learning using Task Wise Attention for Predicting Binary Properties of Tweets : Shared-Task-On-Fighting the {COVID}-19 Infodemic",
author = "Suhane, Ayush and
Kowshik, Shreyas",
editor = "Feldman, Anna and
Da San Martino, Giovanni and
Leberknight, Chris and
Nakov, Preslav",
booktitle = "Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4if-1.16/",
doi = "10.18653/v1/2021.nlp4if-1.16",
pages = "110--114",
abstract = "In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention layer for inter-task information aggregation. This was built on top of the Bidirectional Encoder Representations obtained from the RoBERTa Transformer. We were able to achieve a mean F1 score of 0.891 on the test data, leading us to the second position on the test-set leaderboard."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suhane-kowshik-2021-multi">
<titleInfo>
<title>Multi Output Learning using Task Wise Attention for Predicting Binary Properties of Tweets : Shared-Task-On-Fighting the COVID-19 Infodemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ayush</namePart>
<namePart type="family">Suhane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shreyas</namePart>
<namePart type="family">Kowshik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Leberknight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention layer for inter-task information aggregation. This was built on top of the Bidirectional Encoder Representations obtained from the RoBERTa Transformer. We were able to achieve a mean F1 score of 0.891 on the test data, leading us to the second position on the test-set leaderboard.</abstract>
<identifier type="citekey">suhane-kowshik-2021-multi</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4if-1.16</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4if-1.16/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>110</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi Output Learning using Task Wise Attention for Predicting Binary Properties of Tweets : Shared-Task-On-Fighting the COVID-19 Infodemic
%A Suhane, Ayush
%A Kowshik, Shreyas
%Y Feldman, Anna
%Y Da San Martino, Giovanni
%Y Leberknight, Chris
%Y Nakov, Preslav
%S Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F suhane-kowshik-2021-multi
%X In this paper, we describe our system for the shared task on Fighting the COVID-19 Infodemic in the English Language. Our proposed architecture consists of a multi-output classification model for the seven tasks, with a task-wise multi-head attention layer for inter-task information aggregation. This was built on top of the Bidirectional Encoder Representations obtained from the RoBERTa Transformer. We were able to achieve a mean F1 score of 0.891 on the test data, leading us to the second position on the test-set leaderboard.
%R 10.18653/v1/2021.nlp4if-1.16
%U https://aclanthology.org/2021.nlp4if-1.16/
%U https://doi.org/10.18653/v1/2021.nlp4if-1.16
%P 110-114
Markdown (Informal)
[Multi Output Learning using Task Wise Attention for Predicting Binary Properties of Tweets : Shared-Task-On-Fighting the COVID-19 Infodemic](https://aclanthology.org/2021.nlp4if-1.16/) (Suhane & Kowshik, NLP4IF 2021)
ACL