@inproceedings{tziafas-etal-2021-fighting,
title = "Fighting the {COVID}-19 Infodemic with a Holistic {BERT} Ensemble",
author = "Tziafas, Georgios and
Kogkalidis, Konstantinos and
Caselli, Tommaso",
editor = "Feldman, Anna and
Da San Martino, Giovanni and
Leberknight, Chris and
Nakov, Preslav",
booktitle = "Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nlp4if-1.18/",
doi = "10.18653/v1/2021.nlp4if-1.18",
pages = "119--124",
abstract = "This paper describes the TOKOFOU system, an ensemble model for misinformation detection tasks based on six different transformer-based pre-trained encoders, implemented in the context of the COVID-19 Infodemic Shared Task for English. We fine tune each model on each of the task`s questions and aggregate their prediction scores using a majority voting approach. TOKOFOU obtains an overall F1 score of 89.7{\%}, ranking first."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tziafas-etal-2021-fighting">
<titleInfo>
<title>Fighting the COVID-19 Infodemic with a Holistic BERT Ensemble</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Tziafas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Kogkalidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Caselli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Leberknight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the TOKOFOU system, an ensemble model for misinformation detection tasks based on six different transformer-based pre-trained encoders, implemented in the context of the COVID-19 Infodemic Shared Task for English. We fine tune each model on each of the task‘s questions and aggregate their prediction scores using a majority voting approach. TOKOFOU obtains an overall F1 score of 89.7%, ranking first.</abstract>
<identifier type="citekey">tziafas-etal-2021-fighting</identifier>
<identifier type="doi">10.18653/v1/2021.nlp4if-1.18</identifier>
<location>
<url>https://aclanthology.org/2021.nlp4if-1.18/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>119</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fighting the COVID-19 Infodemic with a Holistic BERT Ensemble
%A Tziafas, Georgios
%A Kogkalidis, Konstantinos
%A Caselli, Tommaso
%Y Feldman, Anna
%Y Da San Martino, Giovanni
%Y Leberknight, Chris
%Y Nakov, Preslav
%S Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F tziafas-etal-2021-fighting
%X This paper describes the TOKOFOU system, an ensemble model for misinformation detection tasks based on six different transformer-based pre-trained encoders, implemented in the context of the COVID-19 Infodemic Shared Task for English. We fine tune each model on each of the task‘s questions and aggregate their prediction scores using a majority voting approach. TOKOFOU obtains an overall F1 score of 89.7%, ranking first.
%R 10.18653/v1/2021.nlp4if-1.18
%U https://aclanthology.org/2021.nlp4if-1.18/
%U https://doi.org/10.18653/v1/2021.nlp4if-1.18
%P 119-124
Markdown (Informal)
[Fighting the COVID-19 Infodemic with a Holistic BERT Ensemble](https://aclanthology.org/2021.nlp4if-1.18/) (Tziafas et al., NLP4IF 2021)
ACL
- Georgios Tziafas, Konstantinos Kogkalidis, and Tommaso Caselli. 2021. Fighting the COVID-19 Infodemic with a Holistic BERT Ensemble. In Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda, pages 119–124, Online. Association for Computational Linguistics.