@inproceedings{adesam-berdicevskis-2021-part,
title = "Part-of-speech tagging of {S}wedish texts in the neural era",
author = "Adesam, Yvonne and
Berdicevskis, Aleksandrs",
editor = "Dobnik, Simon and
{\O}vrelid, Lilja",
booktitle = "Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)",
month = may # " 31--2 " # jun,
year = "2021",
address = "Reykjavik, Iceland (Online)",
publisher = {Link{\"o}ping University Electronic Press, Sweden},
url = "https://aclanthology.org/2021.nodalida-main.20",
pages = "200--209",
abstract = "We train and test five open-source taggers, which use different methods, on three Swedish corpora, which are of comparable size but use different tagsets. The KB-Bert tagger achieves the highest accuracy for part-of-speech and morphological tagging, while being fast enough for practical use. We also compare the performance across tagsets and across different genres in one of the corpora. We perform manual error analysis and perform a statistical analysis of factors which affect how difficult specific tags are. Finally, we test ensemble methods, showing that a small (but not significant) improvement over the best-performing tagger can be achieved.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="adesam-berdicevskis-2021-part">
<titleInfo>
<title>Part-of-speech tagging of Swedish texts in the neural era</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvonne</namePart>
<namePart type="family">Adesam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandrs</namePart>
<namePart type="family">Berdicevskis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-may 31–2 jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press, Sweden</publisher>
<place>
<placeTerm type="text">Reykjavik, Iceland (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We train and test five open-source taggers, which use different methods, on three Swedish corpora, which are of comparable size but use different tagsets. The KB-Bert tagger achieves the highest accuracy for part-of-speech and morphological tagging, while being fast enough for practical use. We also compare the performance across tagsets and across different genres in one of the corpora. We perform manual error analysis and perform a statistical analysis of factors which affect how difficult specific tags are. Finally, we test ensemble methods, showing that a small (but not significant) improvement over the best-performing tagger can be achieved.</abstract>
<identifier type="citekey">adesam-berdicevskis-2021-part</identifier>
<location>
<url>https://aclanthology.org/2021.nodalida-main.20</url>
</location>
<part>
<date>2021-may 31–2 jun</date>
<extent unit="page">
<start>200</start>
<end>209</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Part-of-speech tagging of Swedish texts in the neural era
%A Adesam, Yvonne
%A Berdicevskis, Aleksandrs
%Y Dobnik, Simon
%Y Øvrelid, Lilja
%S Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
%D 2021
%8 may 31–2 jun
%I Linköping University Electronic Press, Sweden
%C Reykjavik, Iceland (Online)
%F adesam-berdicevskis-2021-part
%X We train and test five open-source taggers, which use different methods, on three Swedish corpora, which are of comparable size but use different tagsets. The KB-Bert tagger achieves the highest accuracy for part-of-speech and morphological tagging, while being fast enough for practical use. We also compare the performance across tagsets and across different genres in one of the corpora. We perform manual error analysis and perform a statistical analysis of factors which affect how difficult specific tags are. Finally, we test ensemble methods, showing that a small (but not significant) improvement over the best-performing tagger can be achieved.
%U https://aclanthology.org/2021.nodalida-main.20
%P 200-209
Markdown (Informal)
[Part-of-speech tagging of Swedish texts in the neural era](https://aclanthology.org/2021.nodalida-main.20) (Adesam & Berdicevskis, NoDaLiDa 2021)
ACL