@inproceedings{melleng-etal-2021-ranking,
title = "Ranking Online Reviews Based on Their Helpfulness: An Unsupervised Approach",
author = "Melleng, Alimuddin and
Jurek-Loughrey, Anna and
P, Deepak",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)",
month = sep,
year = "2021",
address = "Held Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-1.109",
pages = "959--967",
abstract = "Online reviews are an essential aspect of online shopping for both customers and retailers. However, many reviews found on the Internet lack in quality, informativeness or helpfulness. In many cases, they lead the customers towards positive or negative opinions without providing any concrete details (e.g., very poor product, I would not recommend it). In this work, we propose a novel unsupervised method for quantifying helpfulness leveraging the availability of a corpus of reviews. In particular, our method exploits three characteristics of the reviews, viz., relevance, emotional intensity and specificity, towards quantifying helpfulness. We perform three rankings (one for each feature above), which are then combined to obtain a final helpfulness ranking. For the purpose of empirically evaluating our method, we use review of four product categories from Amazon review. The experimental evaluation demonstrates the effectiveness of our method in comparison to a recent and state-of-the-art baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="melleng-etal-2021-ranking">
<titleInfo>
<title>Ranking Online Reviews Based on Their Helpfulness: An Unsupervised Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alimuddin</namePart>
<namePart type="family">Melleng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Jurek-Loughrey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deepak</namePart>
<namePart type="family">P</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Held Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Online reviews are an essential aspect of online shopping for both customers and retailers. However, many reviews found on the Internet lack in quality, informativeness or helpfulness. In many cases, they lead the customers towards positive or negative opinions without providing any concrete details (e.g., very poor product, I would not recommend it). In this work, we propose a novel unsupervised method for quantifying helpfulness leveraging the availability of a corpus of reviews. In particular, our method exploits three characteristics of the reviews, viz., relevance, emotional intensity and specificity, towards quantifying helpfulness. We perform three rankings (one for each feature above), which are then combined to obtain a final helpfulness ranking. For the purpose of empirically evaluating our method, we use review of four product categories from Amazon review. The experimental evaluation demonstrates the effectiveness of our method in comparison to a recent and state-of-the-art baseline.</abstract>
<identifier type="citekey">melleng-etal-2021-ranking</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-1.109</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>959</start>
<end>967</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ranking Online Reviews Based on Their Helpfulness: An Unsupervised Approach
%A Melleng, Alimuddin
%A Jurek-Loughrey, Anna
%A P, Deepak
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)
%D 2021
%8 September
%I INCOMA Ltd.
%C Held Online
%F melleng-etal-2021-ranking
%X Online reviews are an essential aspect of online shopping for both customers and retailers. However, many reviews found on the Internet lack in quality, informativeness or helpfulness. In many cases, they lead the customers towards positive or negative opinions without providing any concrete details (e.g., very poor product, I would not recommend it). In this work, we propose a novel unsupervised method for quantifying helpfulness leveraging the availability of a corpus of reviews. In particular, our method exploits three characteristics of the reviews, viz., relevance, emotional intensity and specificity, towards quantifying helpfulness. We perform three rankings (one for each feature above), which are then combined to obtain a final helpfulness ranking. For the purpose of empirically evaluating our method, we use review of four product categories from Amazon review. The experimental evaluation demonstrates the effectiveness of our method in comparison to a recent and state-of-the-art baseline.
%U https://aclanthology.org/2021.ranlp-1.109
%P 959-967
Markdown (Informal)
[Ranking Online Reviews Based on Their Helpfulness: An Unsupervised Approach](https://aclanthology.org/2021.ranlp-1.109) (Melleng et al., RANLP 2021)
ACL