@inproceedings{mishra-chakraborty-2021-local-pruning,
title = "Does local pruning offer task-specific models to learn effectively ?",
author = "Mishra, Abhishek Kumar and
Chakraborty, Mohna",
editor = "Djabri, Souhila and
Gimadi, Dinara and
Mihaylova, Tsvetomila and
Nikolova-Koleva, Ivelina",
booktitle = "Proceedings of the Student Research Workshop Associated with RANLP 2021",
month = sep,
year = "2021",
address = "Online",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/2021.ranlp-srw.17",
pages = "118--125",
abstract = "The need to deploy large-scale pre-trained models on edge devices under limited computational resources has led to substantial research to compress these large models. However, less attention has been given to compress the task-specific models. In this work, we investigate the different methods of unstructured pruning on task-specific models for Aspect-based Sentiment Analysis (ABSA) tasks. Specifically, we analyze differences in the learning dynamics of pruned models by using the standard pruning techniques to achieve high-performing sparse networks. We develop a hypothesis to demonstrate the effectiveness of local pruning over global pruning considering a simple CNN model. Later, we utilize the hypothesis to demonstrate the efficacy of the pruned state-of-the-art model compared to the over-parameterized state-of-the-art model under two settings, the first considering the baselines for the same task used for generating the hypothesis, i.e., aspect extraction and the second considering a different task, i.e., sentiment analysis. We also provide discussion related to the generalization of the pruning hypothesis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mishra-chakraborty-2021-local-pruning">
<titleInfo>
<title>Does local pruning offer task-specific models to learn effectively ?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohna</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Student Research Workshop Associated with RANLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Souhila</namePart>
<namePart type="family">Djabri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dinara</namePart>
<namePart type="family">Gimadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsvetomila</namePart>
<namePart type="family">Mihaylova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivelina</namePart>
<namePart type="family">Nikolova-Koleva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The need to deploy large-scale pre-trained models on edge devices under limited computational resources has led to substantial research to compress these large models. However, less attention has been given to compress the task-specific models. In this work, we investigate the different methods of unstructured pruning on task-specific models for Aspect-based Sentiment Analysis (ABSA) tasks. Specifically, we analyze differences in the learning dynamics of pruned models by using the standard pruning techniques to achieve high-performing sparse networks. We develop a hypothesis to demonstrate the effectiveness of local pruning over global pruning considering a simple CNN model. Later, we utilize the hypothesis to demonstrate the efficacy of the pruned state-of-the-art model compared to the over-parameterized state-of-the-art model under two settings, the first considering the baselines for the same task used for generating the hypothesis, i.e., aspect extraction and the second considering a different task, i.e., sentiment analysis. We also provide discussion related to the generalization of the pruning hypothesis.</abstract>
<identifier type="citekey">mishra-chakraborty-2021-local-pruning</identifier>
<location>
<url>https://aclanthology.org/2021.ranlp-srw.17</url>
</location>
<part>
<date>2021-09</date>
<extent unit="page">
<start>118</start>
<end>125</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Does local pruning offer task-specific models to learn effectively ?
%A Mishra, Abhishek Kumar
%A Chakraborty, Mohna
%Y Djabri, Souhila
%Y Gimadi, Dinara
%Y Mihaylova, Tsvetomila
%Y Nikolova-Koleva, Ivelina
%S Proceedings of the Student Research Workshop Associated with RANLP 2021
%D 2021
%8 September
%I INCOMA Ltd.
%C Online
%F mishra-chakraborty-2021-local-pruning
%X The need to deploy large-scale pre-trained models on edge devices under limited computational resources has led to substantial research to compress these large models. However, less attention has been given to compress the task-specific models. In this work, we investigate the different methods of unstructured pruning on task-specific models for Aspect-based Sentiment Analysis (ABSA) tasks. Specifically, we analyze differences in the learning dynamics of pruned models by using the standard pruning techniques to achieve high-performing sparse networks. We develop a hypothesis to demonstrate the effectiveness of local pruning over global pruning considering a simple CNN model. Later, we utilize the hypothesis to demonstrate the efficacy of the pruned state-of-the-art model compared to the over-parameterized state-of-the-art model under two settings, the first considering the baselines for the same task used for generating the hypothesis, i.e., aspect extraction and the second considering a different task, i.e., sentiment analysis. We also provide discussion related to the generalization of the pruning hypothesis.
%U https://aclanthology.org/2021.ranlp-srw.17
%P 118-125
Markdown (Informal)
[Does local pruning offer task-specific models to learn effectively ?](https://aclanthology.org/2021.ranlp-srw.17) (Mishra & Chakraborty, RANLP 2021)
ACL