@inproceedings{lin-etal-2021-discussion,
title = "Discussion on domain generalization in the cross-device speaker verification system",
author = "Lin, Wei-Ting and
Zhang, Yu-Jia and
Chen, Chia-Ping and
Lu, Chung-Li and
Chan, Bo-Cheng",
editor = "Lee, Lung-Hao and
Chang, Chia-Hui and
Chen, Kuan-Yu",
booktitle = "Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)",
month = oct,
year = "2021",
address = "Taoyuan, Taiwan",
publisher = "The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)",
url = "https://aclanthology.org/2021.rocling-1.12/",
pages = "87--94",
abstract = "In this paper, we use domain generalization to improve the performance of the cross-device speaker verification system. Based on a trainable speaker verification system, we use domain generalization algorithms to fine-tune the model parameters. First, we use the VoxCeleb2 dataset to train ECAPA-TDNN as a baseline model. Then, use the CHT-TDSV dataset and the following domain generalization algorithms to fine-tune it: DANN, CDNN, Deep CORAL. Our proposed system tests 10 different scenarios in the NSYSU-TDSV dataset, including a single device and multiple devices. Finally, in the scenario of multiple devices, the best equal error rate decreased from 18.39 in the baseline to 8.84. Successfully achieved cross-device identification on the speaker verification system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2021-discussion">
<titleInfo>
<title>Discussion on domain generalization in the cross-device speaker verification system</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei-Ting</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu-Jia</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Ping</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Li</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo-Cheng</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lung-Hao</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuan-Yu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)</publisher>
<place>
<placeTerm type="text">Taoyuan, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we use domain generalization to improve the performance of the cross-device speaker verification system. Based on a trainable speaker verification system, we use domain generalization algorithms to fine-tune the model parameters. First, we use the VoxCeleb2 dataset to train ECAPA-TDNN as a baseline model. Then, use the CHT-TDSV dataset and the following domain generalization algorithms to fine-tune it: DANN, CDNN, Deep CORAL. Our proposed system tests 10 different scenarios in the NSYSU-TDSV dataset, including a single device and multiple devices. Finally, in the scenario of multiple devices, the best equal error rate decreased from 18.39 in the baseline to 8.84. Successfully achieved cross-device identification on the speaker verification system.</abstract>
<identifier type="citekey">lin-etal-2021-discussion</identifier>
<location>
<url>https://aclanthology.org/2021.rocling-1.12/</url>
</location>
<part>
<date>2021-10</date>
<extent unit="page">
<start>87</start>
<end>94</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discussion on domain generalization in the cross-device speaker verification system
%A Lin, Wei-Ting
%A Zhang, Yu-Jia
%A Chen, Chia-Ping
%A Lu, Chung-Li
%A Chan, Bo-Cheng
%Y Lee, Lung-Hao
%Y Chang, Chia-Hui
%Y Chen, Kuan-Yu
%S Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
%D 2021
%8 October
%I The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
%C Taoyuan, Taiwan
%F lin-etal-2021-discussion
%X In this paper, we use domain generalization to improve the performance of the cross-device speaker verification system. Based on a trainable speaker verification system, we use domain generalization algorithms to fine-tune the model parameters. First, we use the VoxCeleb2 dataset to train ECAPA-TDNN as a baseline model. Then, use the CHT-TDSV dataset and the following domain generalization algorithms to fine-tune it: DANN, CDNN, Deep CORAL. Our proposed system tests 10 different scenarios in the NSYSU-TDSV dataset, including a single device and multiple devices. Finally, in the scenario of multiple devices, the best equal error rate decreased from 18.39 in the baseline to 8.84. Successfully achieved cross-device identification on the speaker verification system.
%U https://aclanthology.org/2021.rocling-1.12/
%P 87-94
Markdown (Informal)
[Discussion on domain generalization in the cross-device speaker verification system](https://aclanthology.org/2021.rocling-1.12/) (Lin et al., ROCLING 2021)
ACL