@inproceedings{osei-brefo-etal-2021-uor,
title = "{UOR} at {S}em{E}val-2021 Task 12: On Crowd Annotations; Learning with Disagreements to optimise crowd truth",
author = "Osei-Brefo, Emmanuel and
Markchom, Thanet and
Liang, Huizhi",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.186/",
doi = "10.18653/v1/2021.semeval-1.186",
pages = "1303--1309",
abstract = "Crowdsourcing has been ubiquitously used for annotating enormous collections of data. However, the major obstacles to using crowd-sourced labels are noise and errors from non-expert annotations. In this work, two approaches dealing with the noise and errors in crowd-sourced labels are proposed. The first approach uses Sharpness-Aware Minimization (SAM), an optimization technique robust to noisy labels. The other approach leverages a neural network layer called softmax-Crowdlayer specifically designed to learn from crowd-sourced annotations. According to the results, the proposed approaches can improve the performance of the Wide Residual Network model and Multi-layer Perception model applied on crowd-sourced datasets in the image processing domain. It also has similar and comparable results with the majority voting technique when applied to the sequential data domain whereby the Bidirectional Encoder Representations from Transformers (BERT) is used as the base model in both instances."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="osei-brefo-etal-2021-uor">
<titleInfo>
<title>UOR at SemEval-2021 Task 12: On Crowd Annotations; Learning with Disagreements to optimise crowd truth</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Osei-Brefo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thanet</namePart>
<namePart type="family">Markchom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huizhi</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Crowdsourcing has been ubiquitously used for annotating enormous collections of data. However, the major obstacles to using crowd-sourced labels are noise and errors from non-expert annotations. In this work, two approaches dealing with the noise and errors in crowd-sourced labels are proposed. The first approach uses Sharpness-Aware Minimization (SAM), an optimization technique robust to noisy labels. The other approach leverages a neural network layer called softmax-Crowdlayer specifically designed to learn from crowd-sourced annotations. According to the results, the proposed approaches can improve the performance of the Wide Residual Network model and Multi-layer Perception model applied on crowd-sourced datasets in the image processing domain. It also has similar and comparable results with the majority voting technique when applied to the sequential data domain whereby the Bidirectional Encoder Representations from Transformers (BERT) is used as the base model in both instances.</abstract>
<identifier type="citekey">osei-brefo-etal-2021-uor</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.186</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.186/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1303</start>
<end>1309</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UOR at SemEval-2021 Task 12: On Crowd Annotations; Learning with Disagreements to optimise crowd truth
%A Osei-Brefo, Emmanuel
%A Markchom, Thanet
%A Liang, Huizhi
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F osei-brefo-etal-2021-uor
%X Crowdsourcing has been ubiquitously used for annotating enormous collections of data. However, the major obstacles to using crowd-sourced labels are noise and errors from non-expert annotations. In this work, two approaches dealing with the noise and errors in crowd-sourced labels are proposed. The first approach uses Sharpness-Aware Minimization (SAM), an optimization technique robust to noisy labels. The other approach leverages a neural network layer called softmax-Crowdlayer specifically designed to learn from crowd-sourced annotations. According to the results, the proposed approaches can improve the performance of the Wide Residual Network model and Multi-layer Perception model applied on crowd-sourced datasets in the image processing domain. It also has similar and comparable results with the majority voting technique when applied to the sequential data domain whereby the Bidirectional Encoder Representations from Transformers (BERT) is used as the base model in both instances.
%R 10.18653/v1/2021.semeval-1.186
%U https://aclanthology.org/2021.semeval-1.186/
%U https://doi.org/10.18653/v1/2021.semeval-1.186
%P 1303-1309
Markdown (Informal)
[UOR at SemEval-2021 Task 12: On Crowd Annotations; Learning with Disagreements to optimise crowd truth](https://aclanthology.org/2021.semeval-1.186/) (Osei-Brefo et al., SemEval 2021)
ACL