@inproceedings{zhao-kawahara-2021-multi,
title = "Multi-Referenced Training for Dialogue Response Generation",
author = "Zhao, Tianyu and
Kawahara, Tatsuya",
editor = "Li, Haizhou and
Levow, Gina-Anne and
Yu, Zhou and
Gupta, Chitralekha and
Sisman, Berrak and
Cai, Siqi and
Vandyke, David and
Dethlefs, Nina and
Wu, Yan and
Li, Junyi Jessy",
booktitle = "Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = jul,
year = "2021",
address = "Singapore and Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.sigdial-1.20/",
doi = "10.18653/v1/2021.sigdial-1.20",
pages = "190--201",
abstract = "In open-domain dialogue response generation, a dialogue context can be continued with diverse responses, and the dialogue models should capture such one-to-many relations. In this work, we first analyze the training objective of dialogue models from the view of Kullback-Leibler divergence (KLD) and show that the gap between the real world probability distribution and the single-referenced data`s probability distribution prevents the model from learning the one-to-many relations efficiently. Then we explore approaches to multi-referenced training in two aspects. Data-wise, we generate diverse pseudo references from a powerful pretrained model to build multi-referenced data that provides a better approximation of the real-world distribution. Model-wise, we propose to equip variational models with an expressive prior, named linear Gaussian model (LGM). Experimental results of automated evaluation and human evaluation show that the methods yield significant improvements over baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-kawahara-2021-multi">
<titleInfo>
<title>Multi-Referenced Training for Dialogue Response Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tianyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuya</namePart>
<namePart type="family">Kawahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haizhou</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gina-Anne</namePart>
<namePart type="family">Levow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhou</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chitralekha</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Berrak</namePart>
<namePart type="family">Sisman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siqi</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Vandyke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Dethlefs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore and Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In open-domain dialogue response generation, a dialogue context can be continued with diverse responses, and the dialogue models should capture such one-to-many relations. In this work, we first analyze the training objective of dialogue models from the view of Kullback-Leibler divergence (KLD) and show that the gap between the real world probability distribution and the single-referenced data‘s probability distribution prevents the model from learning the one-to-many relations efficiently. Then we explore approaches to multi-referenced training in two aspects. Data-wise, we generate diverse pseudo references from a powerful pretrained model to build multi-referenced data that provides a better approximation of the real-world distribution. Model-wise, we propose to equip variational models with an expressive prior, named linear Gaussian model (LGM). Experimental results of automated evaluation and human evaluation show that the methods yield significant improvements over baselines.</abstract>
<identifier type="citekey">zhao-kawahara-2021-multi</identifier>
<identifier type="doi">10.18653/v1/2021.sigdial-1.20</identifier>
<location>
<url>https://aclanthology.org/2021.sigdial-1.20/</url>
</location>
<part>
<date>2021-07</date>
<extent unit="page">
<start>190</start>
<end>201</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Referenced Training for Dialogue Response Generation
%A Zhao, Tianyu
%A Kawahara, Tatsuya
%Y Li, Haizhou
%Y Levow, Gina-Anne
%Y Yu, Zhou
%Y Gupta, Chitralekha
%Y Sisman, Berrak
%Y Cai, Siqi
%Y Vandyke, David
%Y Dethlefs, Nina
%Y Wu, Yan
%Y Li, Junyi Jessy
%S Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2021
%8 July
%I Association for Computational Linguistics
%C Singapore and Online
%F zhao-kawahara-2021-multi
%X In open-domain dialogue response generation, a dialogue context can be continued with diverse responses, and the dialogue models should capture such one-to-many relations. In this work, we first analyze the training objective of dialogue models from the view of Kullback-Leibler divergence (KLD) and show that the gap between the real world probability distribution and the single-referenced data‘s probability distribution prevents the model from learning the one-to-many relations efficiently. Then we explore approaches to multi-referenced training in two aspects. Data-wise, we generate diverse pseudo references from a powerful pretrained model to build multi-referenced data that provides a better approximation of the real-world distribution. Model-wise, we propose to equip variational models with an expressive prior, named linear Gaussian model (LGM). Experimental results of automated evaluation and human evaluation show that the methods yield significant improvements over baselines.
%R 10.18653/v1/2021.sigdial-1.20
%U https://aclanthology.org/2021.sigdial-1.20/
%U https://doi.org/10.18653/v1/2021.sigdial-1.20
%P 190-201
Markdown (Informal)
[Multi-Referenced Training for Dialogue Response Generation](https://aclanthology.org/2021.sigdial-1.20/) (Zhao & Kawahara, SIGDIAL 2021)
ACL