Correct Metadata for
Abstract
In this paper, we describe our approaches for task six of Social Media Mining for Health Applications (SMM4H) shared task in 2021. The task is to classify twitter tweets containing COVID-19 symptoms in three classes (self-reports, non-personal reports & literature/news mentions). We implemented BERT and XLNet for this text classification task. Best result was achieved by XLNet approach, which is F1 score 0.94, precision 0.9448 and recall 0.94448. This is slightly better than the average score, i.e. F1 score 0.93, precision 0.93235 and recall 0.93235.- Anthology ID:
- 2021.smm4h-1.19
- Volume:
- Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task
- Month:
- June
- Year:
- 2021
- Address:
- Mexico City, Mexico
- Editors:
- Arjun Magge, Ari Klein, Antonio Miranda-Escalada, Mohammed Ali Al-garadi, Ilseyar Alimova, Zulfat Miftahutdinov, Eulalia Farre-Maduell, Salvador Lima Lopez, Ivan Flores, Karen O'Connor, Davy Weissenbacher, Elena Tutubalina, Abeed Sarker, Juan M Banda, Martin Krallinger, Graciela Gonzalez-Hernandez
- Venue:
- SMM4H
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 102–104
- Language:
- URL:
- https://aclanthology.org/2021.smm4h-1.19/
- DOI:
- 10.18653/v1/2021.smm4h-1.19
- Bibkey:
- Cite (ACL):
- Deepak Kumar, Nalin Kumar, and Subhankar Mishra. 2021. NLP@NISER: Classification of COVID19 tweets containing symptoms. In Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task, pages 102–104, Mexico City, Mexico. Association for Computational Linguistics.
- Cite (Informal):
- NLP@NISER: Classification of COVID19 tweets containing symptoms (Kumar et al., SMM4H 2021)
- Copy Citation:
- PDF:
- https://aclanthology.org/2021.smm4h-1.19.pdf
Export citation
@inproceedings{kumar-etal-2021-nlp, title = "{NLP}@{NISER}: Classification of {COVID}19 tweets containing symptoms", author = "Kumar, Deepak and Kumar, Nalin and Mishra, Subhankar", editor = "Magge, Arjun and Klein, Ari and Miranda-Escalada, Antonio and Al-garadi, Mohammed Ali and Alimova, Ilseyar and Miftahutdinov, Zulfat and Farre-Maduell, Eulalia and Lopez, Salvador Lima and Flores, Ivan and O'Connor, Karen and Weissenbacher, Davy and Tutubalina, Elena and Sarker, Abeed and Banda, Juan M and Krallinger, Martin and Gonzalez-Hernandez, Graciela", booktitle = "Proceedings of the Sixth Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task", month = jun, year = "2021", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.smm4h-1.19/", doi = "10.18653/v1/2021.smm4h-1.19", pages = "102--104", abstract = "In this paper, we describe our approaches for task six of Social Media Mining for Health Applications (SMM4H) shared task in 2021. The task is to classify twitter tweets containing COVID-19 symptoms in three classes (self-reports, non-personal reports {\&} literature/news mentions). We implemented BERT and XLNet for this text classification task. Best result was achieved by XLNet approach, which is F1 score 0.94, precision 0.9448 and recall 0.94448. This is slightly better than the average score, i.e. F1 score 0.93, precision 0.93235 and recall 0.93235." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="kumar-etal-2021-nlp"> <titleInfo> <title>NLP@NISER: Classification of COVID19 tweets containing symptoms</title> </titleInfo> <name type="personal"> <namePart type="given">Deepak</namePart> <namePart type="family">Kumar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nalin</namePart> <namePart type="family">Kumar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Subhankar</namePart> <namePart type="family">Mishra</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021-06</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task</title> </titleInfo> <name type="personal"> <namePart type="given">Arjun</namePart> <namePart type="family">Magge</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ari</namePart> <namePart type="family">Klein</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Miranda-Escalada</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mohammed</namePart> <namePart type="given">Ali</namePart> <namePart type="family">Al-garadi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ilseyar</namePart> <namePart type="family">Alimova</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zulfat</namePart> <namePart type="family">Miftahutdinov</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eulalia</namePart> <namePart type="family">Farre-Maduell</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Salvador</namePart> <namePart type="given">Lima</namePart> <namePart type="family">Lopez</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ivan</namePart> <namePart type="family">Flores</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karen</namePart> <namePart type="family">O’Connor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Davy</namePart> <namePart type="family">Weissenbacher</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elena</namePart> <namePart type="family">Tutubalina</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Abeed</namePart> <namePart type="family">Sarker</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Juan</namePart> <namePart type="given">M</namePart> <namePart type="family">Banda</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Krallinger</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Graciela</namePart> <namePart type="family">Gonzalez-Hernandez</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Mexico City, Mexico</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>In this paper, we describe our approaches for task six of Social Media Mining for Health Applications (SMM4H) shared task in 2021. The task is to classify twitter tweets containing COVID-19 symptoms in three classes (self-reports, non-personal reports & literature/news mentions). We implemented BERT and XLNet for this text classification task. Best result was achieved by XLNet approach, which is F1 score 0.94, precision 0.9448 and recall 0.94448. This is slightly better than the average score, i.e. F1 score 0.93, precision 0.93235 and recall 0.93235.</abstract> <identifier type="citekey">kumar-etal-2021-nlp</identifier> <identifier type="doi">10.18653/v1/2021.smm4h-1.19</identifier> <location> <url>https://aclanthology.org/2021.smm4h-1.19/</url> </location> <part> <date>2021-06</date> <extent unit="page"> <start>102</start> <end>104</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T NLP@NISER: Classification of COVID19 tweets containing symptoms %A Kumar, Deepak %A Kumar, Nalin %A Mishra, Subhankar %Y Magge, Arjun %Y Klein, Ari %Y Miranda-Escalada, Antonio %Y Al-garadi, Mohammed Ali %Y Alimova, Ilseyar %Y Miftahutdinov, Zulfat %Y Farre-Maduell, Eulalia %Y Lopez, Salvador Lima %Y Flores, Ivan %Y O’Connor, Karen %Y Weissenbacher, Davy %Y Tutubalina, Elena %Y Sarker, Abeed %Y Banda, Juan M. %Y Krallinger, Martin %Y Gonzalez-Hernandez, Graciela %S Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task %D 2021 %8 June %I Association for Computational Linguistics %C Mexico City, Mexico %F kumar-etal-2021-nlp %X In this paper, we describe our approaches for task six of Social Media Mining for Health Applications (SMM4H) shared task in 2021. The task is to classify twitter tweets containing COVID-19 symptoms in three classes (self-reports, non-personal reports & literature/news mentions). We implemented BERT and XLNet for this text classification task. Best result was achieved by XLNet approach, which is F1 score 0.94, precision 0.9448 and recall 0.94448. This is slightly better than the average score, i.e. F1 score 0.93, precision 0.93235 and recall 0.93235. %R 10.18653/v1/2021.smm4h-1.19 %U https://aclanthology.org/2021.smm4h-1.19/ %U https://doi.org/10.18653/v1/2021.smm4h-1.19 %P 102-104
Markdown (Informal)
[NLP@NISER: Classification of COVID19 tweets containing symptoms](https://aclanthology.org/2021.smm4h-1.19/) (Kumar et al., SMM4H 2021)
- NLP@NISER: Classification of COVID19 tweets containing symptoms (Kumar et al., SMM4H 2021)
ACL
- Deepak Kumar, Nalin Kumar, and Subhankar Mishra. 2021. NLP@NISER: Classification of COVID19 tweets containing symptoms. In Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task, pages 102–104, Mexico City, Mexico. Association for Computational Linguistics.