@inproceedings{novikova-2021-robustness,
title = "Robustness and Sensitivity of {BERT} Models Predicting {A}lzheimer`s Disease from Text",
author = "Novikova, Jekaterina",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wnut-1.37/",
doi = "10.18653/v1/2021.wnut-1.37",
pages = "334--339",
abstract = "Understanding robustness and sensitivity of BERT models predicting Alzheimer`s disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a controlled amount of desired and undesired text alterations impacts performance of BERT. We show that BERT is robust to natural linguistic variations in text. On the other hand, we show that BERT is not sensitive to removing clinically important information from text."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="novikova-2021-robustness">
<titleInfo>
<title>Robustness and Sensitivity of BERT Models Predicting Alzheimer‘s Disease from Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jekaterina</namePart>
<namePart type="family">Novikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding robustness and sensitivity of BERT models predicting Alzheimer‘s disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a controlled amount of desired and undesired text alterations impacts performance of BERT. We show that BERT is robust to natural linguistic variations in text. On the other hand, we show that BERT is not sensitive to removing clinically important information from text.</abstract>
<identifier type="citekey">novikova-2021-robustness</identifier>
<identifier type="doi">10.18653/v1/2021.wnut-1.37</identifier>
<location>
<url>https://aclanthology.org/2021.wnut-1.37/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>334</start>
<end>339</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Robustness and Sensitivity of BERT Models Predicting Alzheimer‘s Disease from Text
%A Novikova, Jekaterina
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F novikova-2021-robustness
%X Understanding robustness and sensitivity of BERT models predicting Alzheimer‘s disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a controlled amount of desired and undesired text alterations impacts performance of BERT. We show that BERT is robust to natural linguistic variations in text. On the other hand, we show that BERT is not sensitive to removing clinically important information from text.
%R 10.18653/v1/2021.wnut-1.37
%U https://aclanthology.org/2021.wnut-1.37/
%U https://doi.org/10.18653/v1/2021.wnut-1.37
%P 334-339
Markdown (Informal)
[Robustness and Sensitivity of BERT Models Predicting Alzheimer’s Disease from Text](https://aclanthology.org/2021.wnut-1.37/) (Novikova, WNUT 2021)
ACL