@inproceedings{ranjan-etal-2022-dual,
title = "Dual Mechanism Priming Effects in {H}indi Word Order",
author = "Ranjan, Sidharth and
van Schijndel, Marten and
Agarwal, Sumeet and
Rajkumar, Rajakrishnan",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.68/",
doi = "10.18653/v1/2022.aacl-main.68",
pages = "936--953",
abstract = "Word order choices during sentence production can be primed by preceding sentences. In this work, we test the DUAL MECHANISM hypothesis that priming is driven by multiple different sources. Using a Hindi corpus of text productions, we model lexical priming with an n-gram cache model, and we capture more abstract syntactic priming with an adaptive neural language model. We permute the preverbal constituents of corpus sentences and then use a logistic regression model to predict which sentences actually occurred in the corpus against artificially generated meaning-equivalent variants. Our results indicate that lexical priming and lexically-independent syntactic priming affect complementary sets of verb classes. By showing that different priming influences are separable from one another, our results support the hypothesis that multiple different cognitive mechanisms underlie priming."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ranjan-etal-2022-dual">
<titleInfo>
<title>Dual Mechanism Priming Effects in Hindi Word Order</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sidharth</namePart>
<namePart type="family">Ranjan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marten</namePart>
<namePart type="family">van Schijndel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sumeet</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajakrishnan</namePart>
<namePart type="family">Rajkumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word order choices during sentence production can be primed by preceding sentences. In this work, we test the DUAL MECHANISM hypothesis that priming is driven by multiple different sources. Using a Hindi corpus of text productions, we model lexical priming with an n-gram cache model, and we capture more abstract syntactic priming with an adaptive neural language model. We permute the preverbal constituents of corpus sentences and then use a logistic regression model to predict which sentences actually occurred in the corpus against artificially generated meaning-equivalent variants. Our results indicate that lexical priming and lexically-independent syntactic priming affect complementary sets of verb classes. By showing that different priming influences are separable from one another, our results support the hypothesis that multiple different cognitive mechanisms underlie priming.</abstract>
<identifier type="citekey">ranjan-etal-2022-dual</identifier>
<identifier type="doi">10.18653/v1/2022.aacl-main.68</identifier>
<location>
<url>https://aclanthology.org/2022.aacl-main.68/</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>936</start>
<end>953</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dual Mechanism Priming Effects in Hindi Word Order
%A Ranjan, Sidharth
%A van Schijndel, Marten
%A Agarwal, Sumeet
%A Rajkumar, Rajakrishnan
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F ranjan-etal-2022-dual
%X Word order choices during sentence production can be primed by preceding sentences. In this work, we test the DUAL MECHANISM hypothesis that priming is driven by multiple different sources. Using a Hindi corpus of text productions, we model lexical priming with an n-gram cache model, and we capture more abstract syntactic priming with an adaptive neural language model. We permute the preverbal constituents of corpus sentences and then use a logistic regression model to predict which sentences actually occurred in the corpus against artificially generated meaning-equivalent variants. Our results indicate that lexical priming and lexically-independent syntactic priming affect complementary sets of verb classes. By showing that different priming influences are separable from one another, our results support the hypothesis that multiple different cognitive mechanisms underlie priming.
%R 10.18653/v1/2022.aacl-main.68
%U https://aclanthology.org/2022.aacl-main.68/
%U https://doi.org/10.18653/v1/2022.aacl-main.68
%P 936-953
Markdown (Informal)
[Dual Mechanism Priming Effects in Hindi Word Order](https://aclanthology.org/2022.aacl-main.68/) (Ranjan et al., AACL-IJCNLP 2022)
ACL
- Sidharth Ranjan, Marten van Schijndel, Sumeet Agarwal, and Rajakrishnan Rajkumar. 2022. Dual Mechanism Priming Effects in Hindi Word Order. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 936–953, Online only. Association for Computational Linguistics.