@inproceedings{mitsuda-etal-2022-combining,
title = "Combining Argumentation Structure and Language Model for Generating Natural Argumentative Dialogue",
author = "Mitsuda, Koh and
Higashinaka, Ryuichiro and
Saito, Kuniko",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-short.9",
doi = "10.18653/v1/2022.aacl-short.9",
pages = "65--71",
abstract = "Argumentative dialogue is an important process where speakers discuss a specific theme for consensus building or decision making. In previous studies for generating consistent argumentative dialogue, retrieval-based methods with hand-crafted argumentation structures have been used. In this study, we propose a method to generate natural argumentative dialogues by combining an argumentation structure and language model. We trained the language model to rewrite a proposition of an argumentation structure on the basis of its information, such as keywords and stance, into the next utterance while considering its context, and we used the model to rewrite propositions in the argumentation structure. We manually evaluated the generated dialogues and found that the proposed method significantly improved the naturalness of dialogues without losing consistency of argumentation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mitsuda-etal-2022-combining">
<titleInfo>
<title>Combining Argumentation Structure and Language Model for Generating Natural Argumentative Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Koh</namePart>
<namePart type="family">Mitsuda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryuichiro</namePart>
<namePart type="family">Higashinaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuniko</namePart>
<namePart type="family">Saito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Argumentative dialogue is an important process where speakers discuss a specific theme for consensus building or decision making. In previous studies for generating consistent argumentative dialogue, retrieval-based methods with hand-crafted argumentation structures have been used. In this study, we propose a method to generate natural argumentative dialogues by combining an argumentation structure and language model. We trained the language model to rewrite a proposition of an argumentation structure on the basis of its information, such as keywords and stance, into the next utterance while considering its context, and we used the model to rewrite propositions in the argumentation structure. We manually evaluated the generated dialogues and found that the proposed method significantly improved the naturalness of dialogues without losing consistency of argumentation.</abstract>
<identifier type="citekey">mitsuda-etal-2022-combining</identifier>
<identifier type="doi">10.18653/v1/2022.aacl-short.9</identifier>
<location>
<url>https://aclanthology.org/2022.aacl-short.9</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>65</start>
<end>71</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Combining Argumentation Structure and Language Model for Generating Natural Argumentative Dialogue
%A Mitsuda, Koh
%A Higashinaka, Ryuichiro
%A Saito, Kuniko
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F mitsuda-etal-2022-combining
%X Argumentative dialogue is an important process where speakers discuss a specific theme for consensus building or decision making. In previous studies for generating consistent argumentative dialogue, retrieval-based methods with hand-crafted argumentation structures have been used. In this study, we propose a method to generate natural argumentative dialogues by combining an argumentation structure and language model. We trained the language model to rewrite a proposition of an argumentation structure on the basis of its information, such as keywords and stance, into the next utterance while considering its context, and we used the model to rewrite propositions in the argumentation structure. We manually evaluated the generated dialogues and found that the proposed method significantly improved the naturalness of dialogues without losing consistency of argumentation.
%R 10.18653/v1/2022.aacl-short.9
%U https://aclanthology.org/2022.aacl-short.9
%U https://doi.org/10.18653/v1/2022.aacl-short.9
%P 65-71
Markdown (Informal)
[Combining Argumentation Structure and Language Model for Generating Natural Argumentative Dialogue](https://aclanthology.org/2022.aacl-short.9) (Mitsuda et al., AACL-IJCNLP 2022)
ACL