@inproceedings{zhou-etal-2022-online,
title = "Online Semantic Parsing for Latency Reduction in Task-Oriented Dialogue",
author = "Zhou, Jiawei and
Eisner, Jason and
Newman, Michael and
Platanios, Emmanouil Antonios and
Thomson, Sam",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.110/",
doi = "10.18653/v1/2022.acl-long.110",
pages = "1554--1576",
abstract = "Standard conversational semantic parsing maps a complete user utterance into an executable program, after which the program is executed to respond to the user. This could be slow when the program contains expensive function calls. We investigate the opportunity to reduce latency by predicting and executing function calls while the user is still speaking. We introduce the task of online semantic parsing for this purpose, with a formal latency reduction metric inspired by simultaneous machine translation. We propose a general framework with first a learned prefix-to-program prediction module, and then a simple yet effective thresholding heuristic for subprogram selection for early execution. Experiments on the SMCalFlow and TreeDST datasets show our approach achieves large latency reduction with good parsing quality, with a 30{\%}{--}65{\%} latency reduction depending on function execution time and allowed cost."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2022-online">
<titleInfo>
<title>Online Semantic Parsing for Latency Reduction in Task-Oriented Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Newman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanouil</namePart>
<namePart type="given">Antonios</namePart>
<namePart type="family">Platanios</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sam</namePart>
<namePart type="family">Thomson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Standard conversational semantic parsing maps a complete user utterance into an executable program, after which the program is executed to respond to the user. This could be slow when the program contains expensive function calls. We investigate the opportunity to reduce latency by predicting and executing function calls while the user is still speaking. We introduce the task of online semantic parsing for this purpose, with a formal latency reduction metric inspired by simultaneous machine translation. We propose a general framework with first a learned prefix-to-program prediction module, and then a simple yet effective thresholding heuristic for subprogram selection for early execution. Experiments on the SMCalFlow and TreeDST datasets show our approach achieves large latency reduction with good parsing quality, with a 30%–65% latency reduction depending on function execution time and allowed cost.</abstract>
<identifier type="citekey">zhou-etal-2022-online</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.110</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.110/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1554</start>
<end>1576</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Online Semantic Parsing for Latency Reduction in Task-Oriented Dialogue
%A Zhou, Jiawei
%A Eisner, Jason
%A Newman, Michael
%A Platanios, Emmanouil Antonios
%A Thomson, Sam
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F zhou-etal-2022-online
%X Standard conversational semantic parsing maps a complete user utterance into an executable program, after which the program is executed to respond to the user. This could be slow when the program contains expensive function calls. We investigate the opportunity to reduce latency by predicting and executing function calls while the user is still speaking. We introduce the task of online semantic parsing for this purpose, with a formal latency reduction metric inspired by simultaneous machine translation. We propose a general framework with first a learned prefix-to-program prediction module, and then a simple yet effective thresholding heuristic for subprogram selection for early execution. Experiments on the SMCalFlow and TreeDST datasets show our approach achieves large latency reduction with good parsing quality, with a 30%–65% latency reduction depending on function execution time and allowed cost.
%R 10.18653/v1/2022.acl-long.110
%U https://aclanthology.org/2022.acl-long.110/
%U https://doi.org/10.18653/v1/2022.acl-long.110
%P 1554-1576
Markdown (Informal)
[Online Semantic Parsing for Latency Reduction in Task-Oriented Dialogue](https://aclanthology.org/2022.acl-long.110/) (Zhou et al., ACL 2022)
ACL
- Jiawei Zhou, Jason Eisner, Michael Newman, Emmanouil Antonios Platanios, and Sam Thomson. 2022. Online Semantic Parsing for Latency Reduction in Task-Oriented Dialogue. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1554–1576, Dublin, Ireland. Association for Computational Linguistics.