@inproceedings{welch-etal-2022-leveraging,
title = "Leveraging Similar Users for Personalized Language Modeling with Limited Data",
author = "Welch, Charles and
Gu, Chenxi and
Kummerfeld, Jonathan K. and
Perez-Rosas, Veronica and
Mihalcea, Rada",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.122",
doi = "10.18653/v1/2022.acl-long.122",
pages = "1742--1752",
abstract = "Personalized language models are designed and trained to capture language patterns specific to individual users. This makes them more accurate at predicting what a user will write. However, when a new user joins a platform and not enough text is available, it is harder to build effective personalized language models. We propose a solution for this problem, using a model trained on users that are similar to a new user. In this paper, we explore strategies for finding the similarity between new users and existing ones and methods for using the data from existing users who are a good match. We further explore the trade-off between available data for new users and how well their language can be modeled.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="welch-etal-2022-leveraging">
<titleInfo>
<title>Leveraging Similar Users for Personalized Language Modeling with Limited Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Charles</namePart>
<namePart type="family">Welch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenxi</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Kummerfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronica</namePart>
<namePart type="family">Perez-Rosas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Personalized language models are designed and trained to capture language patterns specific to individual users. This makes them more accurate at predicting what a user will write. However, when a new user joins a platform and not enough text is available, it is harder to build effective personalized language models. We propose a solution for this problem, using a model trained on users that are similar to a new user. In this paper, we explore strategies for finding the similarity between new users and existing ones and methods for using the data from existing users who are a good match. We further explore the trade-off between available data for new users and how well their language can be modeled.</abstract>
<identifier type="citekey">welch-etal-2022-leveraging</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.122</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.122</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1742</start>
<end>1752</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Similar Users for Personalized Language Modeling with Limited Data
%A Welch, Charles
%A Gu, Chenxi
%A Kummerfeld, Jonathan K.
%A Perez-Rosas, Veronica
%A Mihalcea, Rada
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F welch-etal-2022-leveraging
%X Personalized language models are designed and trained to capture language patterns specific to individual users. This makes them more accurate at predicting what a user will write. However, when a new user joins a platform and not enough text is available, it is harder to build effective personalized language models. We propose a solution for this problem, using a model trained on users that are similar to a new user. In this paper, we explore strategies for finding the similarity between new users and existing ones and methods for using the data from existing users who are a good match. We further explore the trade-off between available data for new users and how well their language can be modeled.
%R 10.18653/v1/2022.acl-long.122
%U https://aclanthology.org/2022.acl-long.122
%U https://doi.org/10.18653/v1/2022.acl-long.122
%P 1742-1752
Markdown (Informal)
[Leveraging Similar Users for Personalized Language Modeling with Limited Data](https://aclanthology.org/2022.acl-long.122) (Welch et al., ACL 2022)
ACL