@inproceedings{zhang-feng-2022-modeling,
title = "Modeling Dual Read/Write Paths for Simultaneous Machine Translation",
author = "Zhang, Shaolei and
Feng, Yang",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.176",
doi = "10.18653/v1/2022.acl-long.176",
pages = "2461--2477",
abstract = "Simultaneous machine translation (SiMT) outputs translation while reading source sentence and hence requires a policy to decide whether to wait for the next source word (READ) or generate a target word (WRITE), the actions of which form a read/write path. Although the read/write path is essential to SiMT performance, no direct supervision is given to the path in the existing methods. In this paper, we propose a method of dual-path SiMT which introduces duality constraints to direct the read/write path. According to duality constraints, the read/write path in source-to-target and target-to-source SiMT models can be mapped to each other. As a result, the two SiMT models can be optimized jointly by forcing their read/write paths to satisfy the mapping. Experiments on En-Vi and De-En tasks show that our method can outperform strong baselines under all latency.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-feng-2022-modeling">
<titleInfo>
<title>Modeling Dual Read/Write Paths for Simultaneous Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shaolei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Simultaneous machine translation (SiMT) outputs translation while reading source sentence and hence requires a policy to decide whether to wait for the next source word (READ) or generate a target word (WRITE), the actions of which form a read/write path. Although the read/write path is essential to SiMT performance, no direct supervision is given to the path in the existing methods. In this paper, we propose a method of dual-path SiMT which introduces duality constraints to direct the read/write path. According to duality constraints, the read/write path in source-to-target and target-to-source SiMT models can be mapped to each other. As a result, the two SiMT models can be optimized jointly by forcing their read/write paths to satisfy the mapping. Experiments on En-Vi and De-En tasks show that our method can outperform strong baselines under all latency.</abstract>
<identifier type="citekey">zhang-feng-2022-modeling</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.176</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.176</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>2461</start>
<end>2477</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Dual Read/Write Paths for Simultaneous Machine Translation
%A Zhang, Shaolei
%A Feng, Yang
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F zhang-feng-2022-modeling
%X Simultaneous machine translation (SiMT) outputs translation while reading source sentence and hence requires a policy to decide whether to wait for the next source word (READ) or generate a target word (WRITE), the actions of which form a read/write path. Although the read/write path is essential to SiMT performance, no direct supervision is given to the path in the existing methods. In this paper, we propose a method of dual-path SiMT which introduces duality constraints to direct the read/write path. According to duality constraints, the read/write path in source-to-target and target-to-source SiMT models can be mapped to each other. As a result, the two SiMT models can be optimized jointly by forcing their read/write paths to satisfy the mapping. Experiments on En-Vi and De-En tasks show that our method can outperform strong baselines under all latency.
%R 10.18653/v1/2022.acl-long.176
%U https://aclanthology.org/2022.acl-long.176
%U https://doi.org/10.18653/v1/2022.acl-long.176
%P 2461-2477
Markdown (Informal)
[Modeling Dual Read/Write Paths for Simultaneous Machine Translation](https://aclanthology.org/2022.acl-long.176) (Zhang & Feng, ACL 2022)
ACL