@inproceedings{amigo-delgado-2022-evaluating,
title = "Evaluating Extreme Hierarchical Multi-label Classification",
author = "Amigo, Enrique and
Delgado, Agust{\'i}n",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.399/",
doi = "10.18653/v1/2022.acl-long.399",
pages = "5809--5819",
abstract = "Several natural language processing (NLP) tasks are defined as a classification problem in its most complex form: Multi-label Hierarchical Extreme classification, in which items may be associated with multiple classes from a set of thousands of possible classes organized in a hierarchy and with a highly unbalanced distribution both in terms of class frequency and the number of labels per item. We analyze the state of the art of evaluation metrics based on a set of formal properties and we define an information theoretic based metric inspired by the Information Contrast Model (ICM). Experiments on synthetic data and a case study on real data show the suitability of the ICM for such scenarios."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="amigo-delgado-2022-evaluating">
<titleInfo>
<title>Evaluating Extreme Hierarchical Multi-label Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enrique</namePart>
<namePart type="family">Amigo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agustín</namePart>
<namePart type="family">Delgado</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Several natural language processing (NLP) tasks are defined as a classification problem in its most complex form: Multi-label Hierarchical Extreme classification, in which items may be associated with multiple classes from a set of thousands of possible classes organized in a hierarchy and with a highly unbalanced distribution both in terms of class frequency and the number of labels per item. We analyze the state of the art of evaluation metrics based on a set of formal properties and we define an information theoretic based metric inspired by the Information Contrast Model (ICM). Experiments on synthetic data and a case study on real data show the suitability of the ICM for such scenarios.</abstract>
<identifier type="citekey">amigo-delgado-2022-evaluating</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.399</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.399/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>5809</start>
<end>5819</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Extreme Hierarchical Multi-label Classification
%A Amigo, Enrique
%A Delgado, Agustín
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F amigo-delgado-2022-evaluating
%X Several natural language processing (NLP) tasks are defined as a classification problem in its most complex form: Multi-label Hierarchical Extreme classification, in which items may be associated with multiple classes from a set of thousands of possible classes organized in a hierarchy and with a highly unbalanced distribution both in terms of class frequency and the number of labels per item. We analyze the state of the art of evaluation metrics based on a set of formal properties and we define an information theoretic based metric inspired by the Information Contrast Model (ICM). Experiments on synthetic data and a case study on real data show the suitability of the ICM for such scenarios.
%R 10.18653/v1/2022.acl-long.399
%U https://aclanthology.org/2022.acl-long.399/
%U https://doi.org/10.18653/v1/2022.acl-long.399
%P 5809-5819
Markdown (Informal)
[Evaluating Extreme Hierarchical Multi-label Classification](https://aclanthology.org/2022.acl-long.399/) (Amigo & Delgado, ACL 2022)
ACL
- Enrique Amigo and Agustín Delgado. 2022. Evaluating Extreme Hierarchical Multi-label Classification. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5809–5819, Dublin, Ireland. Association for Computational Linguistics.